基于YOLOv7模型的无核白葡萄分级系统研究  

Study on classification system for seedless white grape based on YOLOv7 model

在线阅读下载全文

作  者:李园园 周文静 崔振宇 卜露 Li Yuanyuan;Zhou Wenjing;Cui Zhenyu;Bu Lu(College of Information Science and Engineering,Xinjiang University of Science and Technology,Korla,841000,Xinjiang,China)

机构地区:[1]新疆科技学院信息科学与工程学院,新疆库尔勒841000

出  处:《新疆农机化》2024年第3期27-29,48,共4页Xinjiang Agricultural Mechanization

基  金:国家级大学生创新创业训练项目(202213561004);自治州科学技术研究计划项目(202201)。

摘  要:无核白葡萄品质的参差不齐导致了其市场竞争力差,人工分级效率低且存在主观差异,本文提出了一种基于YOLOv7模型的无核白葡萄分级系统。将无核白葡萄果实图像作为模型的输入,对YOLOv7模型进行训练和调整所得模型的平均精度高达96.86%,分级平均速度达1.9张/s。将本文的分级模型与传统的人工分级方式进行对比,验证了该模型在对不同品质无核白葡萄果实分级中的优势。试验结果表明,基于YOLOv7模型的无核白葡萄分级系统可以实时、准确地对不同级别无核白葡萄果实进行分级,并且在识别精度、速度等方面均优于传统的人工分级方式,该系统可为无核白葡萄果实分级研究提供参考。The uneven quality of seedless white grapes leads to poor market competitiveness,while manual grading has low efficiency and subjective differences.Therefore,the objective of this paper is to propose a seedless white grape classification system based on the YOLOv7 model.The image of the seedless white grape fruit was used as input to train and adjust the YOLOv7 model,resulting in an average accuracy of 96.86%and an average grading speed of 1.9 images per second.The grading model proposed in this article was compared with traditional manual grading methods to verify its advantages in grading seedless white grape fruits of different qualities.The experimental results show that the YOLOv7 model can distinguish different levels of seedless white grapes in real time and accurately,and is superior to traditional manual grading methods in terms of grading accuracy and speed.This classification system provides a valuable reference for research of fruit grading in seedless white grapes.

关 键 词:YOLOv7 无核白葡萄 分级检测 

分 类 号:TS255.7[轻工技术与工程—农产品加工及贮藏工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象