检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李园园 周文静 崔振宇 卜露 Li Yuanyuan;Zhou Wenjing;Cui Zhenyu;Bu Lu(College of Information Science and Engineering,Xinjiang University of Science and Technology,Korla,841000,Xinjiang,China)
机构地区:[1]新疆科技学院信息科学与工程学院,新疆库尔勒841000
出 处:《新疆农机化》2024年第3期27-29,48,共4页Xinjiang Agricultural Mechanization
基 金:国家级大学生创新创业训练项目(202213561004);自治州科学技术研究计划项目(202201)。
摘 要:无核白葡萄品质的参差不齐导致了其市场竞争力差,人工分级效率低且存在主观差异,本文提出了一种基于YOLOv7模型的无核白葡萄分级系统。将无核白葡萄果实图像作为模型的输入,对YOLOv7模型进行训练和调整所得模型的平均精度高达96.86%,分级平均速度达1.9张/s。将本文的分级模型与传统的人工分级方式进行对比,验证了该模型在对不同品质无核白葡萄果实分级中的优势。试验结果表明,基于YOLOv7模型的无核白葡萄分级系统可以实时、准确地对不同级别无核白葡萄果实进行分级,并且在识别精度、速度等方面均优于传统的人工分级方式,该系统可为无核白葡萄果实分级研究提供参考。The uneven quality of seedless white grapes leads to poor market competitiveness,while manual grading has low efficiency and subjective differences.Therefore,the objective of this paper is to propose a seedless white grape classification system based on the YOLOv7 model.The image of the seedless white grape fruit was used as input to train and adjust the YOLOv7 model,resulting in an average accuracy of 96.86%and an average grading speed of 1.9 images per second.The grading model proposed in this article was compared with traditional manual grading methods to verify its advantages in grading seedless white grape fruits of different qualities.The experimental results show that the YOLOv7 model can distinguish different levels of seedless white grapes in real time and accurately,and is superior to traditional manual grading methods in terms of grading accuracy and speed.This classification system provides a valuable reference for research of fruit grading in seedless white grapes.
分 类 号:TS255.7[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7