检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱慧 刘瑞兰 QIAN Hui;LIU Ruilan(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
机构地区:[1]南京邮电大学自动化学院、人工智能学院,江苏南京210023
出 处:《软件导刊》2024年第6期53-58,共6页Software Guide
摘 要:精对苯二甲酸(PTA)生产过程中PX氧化反应的副产品4-CBA难以在线测量,只能通过离线分析获得少量样本。针对该问题,提出一种基于随机卷积核神经网络数据增强的动态软测量模型RCKN-XGBoost。该模型首先采用随机卷积核神经网络(RCKN)进行数据增强,扩充样本数量并改善其多样性;然后将原始样本与扩充后的样本线性组合,构成新的数据集;最后采用XGBoost对网络进行训练与预测。在某化工厂PX氧化过程4-CBA含量数据集上对RCKN-XGBoost模型与XGBoost、CNN、CNN-XGBoost、Laplace-XGBoost模型进行比较,发现RCKN-XGBoost模型的MRE指标分别降低了1.07%、0.92%、0.80%和0.65%,RMSE分别降低了27.9、18.62、12.58和8.05,证明了该模型的有效性。The by-product 4-CBA of PX oxidation reaction in the production process of purified terephthalic acid(PTA)is difficult to mea-sure online,and only a small amount of samples can be obtained through offline analysis.A dynamic soft sensing model RCKN-XGBoost based on random convolutional kernel neural network data augmentation is proposed to address this issue.The model first uses random convolu-tional kernel neural network(RCKN)for data augmentation,expanding the sample size and improving its diversity;Then,the original sample is linearly combined with the expanded sample to form a new dataset;Finally,XGBoost was used to train and predict the network.On the 4-CBA content dataset of PX oxidation process in a certain chemical plant,the RCKN-XGBoost model was compared with XGBoost,CNN,CNN-XGBoost,and Laplace XGBoost models.It was found that the MRE index of the RCKN-XGBoost model decreased by 1.07%,0.92%,0.80%,and 0.65%,respectively,and the RMSE decreased by 27.9%,18.62%,12.58%,and 8.05%,proving the effectiveness of the model.
关 键 词:软测量 4-CBA 随机卷积核神经网络 数据增强 XGBoost
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171