检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冀晓霞 JI Xiaoxia(School of Mathematics and Computer Science,Jilin Normal University,Changchun 130000,Jilin,China)
机构地区:[1]吉林师范大学数学与计算机学院,吉林长春130000
出 处:《惠州学院学报》2024年第3期73-78,共6页Journal of Huizhou University
摘 要:分析了一类广义不确定时滞系统一些具体的鲁棒性能。针对既存在状态滞后,又存在时变参数不确定性的系统,通过构造Lyapunov泛函,根据Lyapunov稳定性理论并结合线性矩阵不等式方法,给出了既能使系统鲁棒稳定又能满足二次型性能指标的条件,并且将该条件转化成等价的线性矩阵不等式可行性问题,还给出了系统最小性能上界的求解方法,最后通过数值例子验证了该条件的可行性。A detailed analysis of specific robustness properties pertaining to a category of uncertain singular time-delay systems is conducted,particularly focusing on systems characterized by both time delay and time-varying parameter uncertainty.By leveraging the construction of a Lyapunov functional and drawing upon Lyapunov stability theory in conjunction with the linear matrix inequality method,a methodology is presented to confer robust stability upon the system,while concurrently ensuring satisfaction of a quadratic performance index.The established condition is reformulated into an equivalent linear matrix inequality feasibility problem,enabling the determination of the upper bound of the minimum system performance through a structured solving approach.
关 键 词:时滞系统 广义不确定性 鲁棒性能 线性矩阵不等式 Schur补引理
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239