检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈晓辉 周骏[1] 蒋超[1] CHEN Xiaohui;ZHOU Jun;JIANG Chao(Air Force Logistics University,Xuzhou 221000,China)
机构地区:[1]空军勤务学院,江苏徐州221000
出 处:《科技创新与生产力》2024年第6期135-137,141,共4页Sci-tech Innovation and Productivity
摘 要:随着锂电池在各类电子设备中的广泛应用,对其剩余电量(State of Charge,SOC)的准确估计变得至关重要。本文提出了一种基于数据挖掘技术的锂电池SOC分析方法。通过收集锂电池充放电过程中的相关数据,利用数据挖掘算法对数据参数进行分析和处理,建立了锂电池SOC预测模型。实验结果表明,该模型能够有效地估计锂电池的SOC,为锂电池的使用和管理提供了重要依据。With the widespread application of lithium batteries in various electronic devices,accurate estimation of their State of Charge(SOC)has become crucial.This paper proposes a lithium battery SOC analysis method based on data mining technology.A lithium battery SOC prediction model is established by collecting relevant data during the charging and discharging process of lithium batteries,analyzing and processing data parameters using data mining algorithms.The experimental results indicate that the model can effectively estimate the SOC of lithium batteries,providing important basis for the use and management of lithium batteries.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33