A Deformable Network with Attention Mechanism for Retinal Vessel Segmentation  

在线阅读下载全文

作  者:Xiaolong Zhu Wenjian Li Weihang Zhang Dongwei Li Huiqi Li 

机构地区:[1]School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China

出  处:《Journal of Beijing Institute of Technology》2024年第3期186-193,共8页北京理工大学学报(英文版)

基  金:Beijing Natural Science Foundation(No.IS23112);Beijing Institute of Technology Research Fund Program for Young Scholars(No.6120220236)。

摘  要:The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network.

关 键 词:retinal vessel segmentation deformable convolution attention mechanism deep learning 

分 类 号:R774.1[医药卫生—眼科]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象