BP神经网络的煤矿塌陷区水深反演  

Water depth inversion in coal mine subsidence area based on BP neural network

在线阅读下载全文

作  者:付俊 毕京锐 付翔 Fu Jun;Bi Jingrui;Fu Xiang(Anhui General Institute of Nuclear Exploration Technology,Wuhu 241000,China;School of Spatial Information Surveying Engineering,Anhui University of Science&Technology,Huainan 232001,China)

机构地区:[1]安徽省核工业勘查技术总院,安徽芜湖241000 [2]安徽理工大学空间信息与测绘工程学院,安徽淮南232001

出  处:《黑龙江科技大学学报》2024年第3期463-468,共6页Journal of Heilongjiang University of Science And Technology

摘  要:为探测煤矿塌陷区的水深,利用Sentinel-2遥感影像数据和无人船实测的水深数据,分析蓝波段、绿波段和红波段与水深实测值的相关性较高,确定其为反演因子,通过提取水深点的辐射亮度值并作归一化处理,建立单波段和多波段对数比值模型,以及BP神经网络模型反演矿区塌陷水域的水深。结果表明,BP神经网络模型的决定系数为0.895,均方根误差为0.428,平均相对误差绝对值为8.12%,预测结果最好,精度最高,优于传统的线性模型。This paper aims to detect the water depth in coal mine subsidence area.The study involves using Sentinel-2 remote sensing image data and the water depth data measured by unmanned ship to analyze the higher correlation between the blue wave band,green band,red band and the measured water depth value respectively,which is determined as the inversion factor;extracting the radiation brightness value of the water depth point and performing the normalization processing;establishing the single band and multi-band logarithmic ratio model and the BP neural network model,which is used to retrieve the water depth of mine subsidence.The results show that the BP neural network model with R 2 by 0.895,ERMSR by 0.428,EMAPE by 8.12%is the best prediction result and the highest precision,and better than the traditional linear model.

关 键 词:塌陷水域 Sentinel-2 水深反演 BP神经网络 

分 类 号:TD327[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象