基于eGWO的物流车车架轻量化研究  

Research on Lightweight of Logistics Vehicle Frame Based on eGWO

在线阅读下载全文

作  者:曹庭瀚 王铁[1] Cao Ting-han;Wang Tie(School of Automobile and Transportation,Shenyang Ligong University,Shenyang 110159,China)

机构地区:[1]沈阳理工大学汽车与交通学院,辽宁沈阳110159

出  处:《内燃机与配件》2024年第11期45-47,共3页Internal Combustion Engine & Parts

摘  要:为提高物流车车架轻量化环节的收敛速度与精度,提出一种基于警戒者灰狼策略与准反射学习策略的改进型灰狼优化算法(eGWO),通过与其他算法进行测试对比,表明eGWO具有良好的求解性能;对物流车车架进行满载弯曲、满载扭转、满载制动、满载转向工况仿真分析,使用最优拉丁超立方试验设计方法与响应面模型方法建立车架近似模型,并使用eGWO对物流车车架的尺寸优化数学模型进行求解,使得车架总质量下降11.9kg,减重率9.94%,为车架轻量化研究提供了可行方法。In order to improve the convergence speed and accuracy of lightweight link of logistics vehicle frame,an improved Gray Wolf optimization algorithm(eGWO)based on the Gray Wolf strategy and quasi-reflection learning strategy is proposed.The test results show that eGWO has good solving performance.Simulation analysis of full-load bending,full-load torsion,full-load braking and full-load steering conditions was carried out on the logistics vehicle frame.The optimal Latin Hypercube test design method and response surface model method were used to establish the approximate frame model,and eGWO was used to solve the mathematical model of the size optimization of the logistics vehicle frame.The total mass of the frame was reduced by 11.9kg and the weight reduction rate was 9.94%.It provides a feasible method for the research of lightweight frame.

关 键 词:群智能优化算法 灰狼优化算法 车架结构 轻量化设计 

分 类 号:U463.32[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象