大学生睡眠质量轨迹和社会时差与焦虑抑郁症状共患的关联  被引量:1

Associations of sleep quality trajectory and social jetlag with comorbid symptoms of anxiety and depression among college students

在线阅读下载全文

作  者:向波 牛雅倩 李婷婷 谢阳 陶舒曼[4] 杨娅娟[3] 邹立巍[4] 陶芳标[1,4] 伍晓艳[1,4] XIANG Bo;NIU Yaqian;LI Tingting;XIE Yang;TAO Shuman;YANG Yajuan;ZOU Liwei;TAO Fangbiao;WU Xiaoyan(Department of Maternal with Child and Adolescent Health,School of Public Health,Anhui Medical University,Hefei(230032),Anhui Province,China;不详)

机构地区:[1]安徽医科大学公共卫生学院儿少卫生与妇幼保健学系,合肥230032 [2]皖南医学院第二附属医院 [3]安徽医科大学护理学院 [4]安徽医科大学出生人口健康教育部重点实验室/环境与人口健康安徽省重点实验室

出  处:《中国学校卫生》2024年第5期640-643,648,共5页Chinese Journal of School Health

基  金:国家自然科学基金项目(82173542,82373592);安徽医科大学科研水平提升计划资助项目(2022xkjT004)。

摘  要:目的探讨大学生睡眠质量轨迹和社会时差与焦虑抑郁症状共患的流行现状及关联,为改善大学生焦虑抑郁症状共患提供理论依据。方法于2019年4—5月,在安徽省合肥市和江西省上饶市方便选取2所高校的1135名学生进行问卷调查,每隔1年随访1次,共调查3次,与基线匹配后有效人数为1034名大学生。采用自评问卷调查大学生社会时差,分别采用匹兹堡睡眠质量量表(PSQI)、广泛性焦虑障碍问卷-7项(GAD-7)、患者健康问卷(PHQ-9)评估大学生的睡眠质量、焦虑症状和抑郁症状,将GAD-7得分≥5分且PHQ-9得分≥5分的大学生界定为焦虑抑郁症状共患。采用潜类别增长模型(LCGM)分析大学生睡眠质量轨迹,采用二元Logistic回归分析睡眠质量轨迹、社会时差与焦虑抑郁症状共患的关联。结果大学生焦虑抑郁共患检出率为16.9%,社会时差≥2 h的检出率为13.8%,睡眠质量总体呈现好转趋势,2种轨迹分别为睡眠质量较好(81.6%)和睡眠质量较差(18.4%)。调整协变量后,二元Logistic回归模型结果显示,睡眠质量较差和社会时差≥2 h与焦虑抑郁症状共患呈正相关(OR值分别为5.94,1.84,P值均<0.05)。结论大学生睡眠质量较差和社会时差≥2 h会增加焦虑抑郁症状共患的风险,早期筛查和干预睡眠质量以及降低社会时差对改善大学生心理健康有重要意义。Objective To describe the prevalence and the association of sleep quality trajectory,social jetlag and comorbid symptoms of anxiety and depression among college students,in order to provide a theoretical basis for improving the comorbid symptoms of anxiety and depression in college students.Methods A questionnaire survey was conducted among 1135 college students from two universities in Shangrao,Jiangxi Province and Hefei,Anhui Province from April to May 2019,and were followed up once every one year for a total of three times,with a valid sample size of 1034 individuals after matching with the baseline survey.A self-assessment questionnaire was used to investigate the social jetlag of college students,the Generalized Anxiety Disorder-7(GAD-7)and Patient Health Questionnaire 9(PHQ-9)were used to evaluate anxiety and depression symptoms,respectively,while the Pittsburgh Sleep Quality Index(PSQI)was used to assess sleep quality.College students with GAD-7 score≥5 and PHQ-9 score≥5 were defined as having comorbid anxiety and depression symptoms.Latent class growth model(LCGM)was employed to analyze the sleep quality trajectory of college students,and binary Logistic regression was used to analyze the relationship between social jetlag,sleep quality trajectory and comorbid symptoms of anxiety and depression.Results The detection rate of comorbid symptoms of anxiety and depression among college students was 16.9%,and the detection rate of social jetlag≥2 h was 13.8%.The sleep quality showed an overall improvement trend,and the two trajectories were good sleep quality(81.6%)and poor sleep quality(18.4%).Binary Logistic regression model showed that poor sleep quality and social jetlag≥2 h were positively correlated with comorbid symptoms of anxiety and depression(OR=5.94,1.84,P<0.05).Conclusions Poor sleep quality and social jetlag≥2 h in college students increase the risk of comorbid symptoms of anxiety and depression.Early screening and intervention of sleep quality and reduction of social jetlag are crucial

关 键 词:睡眠 焦虑 抑郁 共病现象 精神卫生 学生 

分 类 号:R179[医药卫生—妇幼卫生保健] G444[医药卫生—公共卫生与预防医学] Q428[哲学宗教—心理学] G479[哲学宗教—发展与教育心理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象