检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任永功[1] 周平磊 张志鹏 REN Yonggong;ZHOU Pinglei;ZHANG Zhipeng(School of Computer Science and Artificial Intelligence,Liaoning Normal University,Dalian 116029,China)
机构地区:[1]辽宁师范大学计算机与人工智能学院,辽宁大连116029
出 处:《通信学报》2024年第6期210-222,共13页Journal on Communications
基 金:国家自然科学基金资助项目(No.61976109);辽宁省“兴辽英才计划”基金资助项目(No.XLYC2006005);辽宁省高等学校科学研究基金资助项目(No.LJKZ0963);辽宁省科技厅重点研发基金资助项目(No.2022JH2/101300271);辽宁省教育厅校基本科研基金资助项目(No.LJKQZ20222431);教育部产学合作协同育人基金资助项目(No.202102550005);辽宁省属本科高校基本科研基金资助项目(No.LS2024Q007)。
摘 要:序列推荐根据目标用户的历史交互序列,预测其可能感兴趣的下一个物品。现有的序列推荐方法虽然可以有效捕获用户的历史交互序列中的长期依赖关系,但是无法为交互序列较短且用户数量庞大的长尾用户提供精确推荐。为了解决此问题,提出了一种基于知识增强对比学习的长尾用户序列推荐算法。首先,基于知识图谱中的丰富实体关系信息,构建一个基于语义的物品相似度度量,分别提取原始序列中物品的协同关联物品。然后,基于不同学习序列提出2种序列增强算子,通过增强自监督信号解决长尾用户序列训练数据不足的问题。最后,通过对比自监督任务和推荐主任务的网络参数共享的联合训练,为长尾用户提供更精确的序列推荐结果。在实际数据集上的实验结果表明,所提算法可以有效提高针对长尾用户的序列推荐精度。Sequential recommendation predicts next items for users based on their historical interactions.Existing methods capture long-term dependencies but struggle to recommend precisely for users with short interaction sequences,especially for long-tail users.Therefore,a sequential recommendation algorithm for long-tail users based on knowledge-enhanced contrastive learning was proposed.Firstly,semantic item similarity was introduced by leveraging relationships between entities in the knowledge graph to extract correlated items from original sequences.Secondly,two sequence augmentation operators were proposed based on different contrastive learning views,addressing the problem of insufficient training for long-tail user sequences by augmenting self-supervised signals.Finally,precise sequence recommendations were provided for long-tail users by utilizing the joint training of shared network parameters between contrastive self-supervised tasks and the recommendation task.Experimental results on real-world datasets demonstrate the effectiveness of the proposed algorithm in improving performance for long-tail users.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30