检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张善文 邵彧 李萍 令伟锋[2] ZHANG Shanwen;SHAO Yu;LI Ping;LING Weifeng(School of Telecommunications and Intelligent Manufacturing,Sias University,Zhengzhou 451150,Henan,China;School of Accounting,Xijing University,Xi an 710123,Shaanxi,China)
机构地区:[1]郑州西亚斯学院电信与智能制造学院,河南郑州451150 [2]西京学院会计学院,陕西西安710123
出 处:《弹箭与制导学报》2024年第3期51-58,共8页Journal of Projectiles,Rockets,Missiles and Guidance
基 金:河南省科技厅科技攻关项目(242102210007,232102210097);陕西省教育厅专项科研计划项目(20JK0413)资助。
摘 要:航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer(MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。Aerial remote sensing image aircraft detection(ARSIAD)is an important and challenging research.Aiming at the problems of existing ARSIAD methods,such as blurred edges of detection aircrafts,low detection accuracy of small aircrafts and insufficient use of global context information of aerial remote sensing image(ARSI),an ARSIAD method based on feature fusion of multi-scale U-Net and Transformer(MSU-Trans)is proposed.In MSU-Trans,multi-scale convolution module inception is used to extract the classification features of various aircrafts in ARSI,Transformer is used to enhance the global semantic detection performance of the model,and feature fusion module is used to integrate high-level and low-level features to obtain complete edge and texture features of aircraft images,and improve the overall detection performance of MSU-Trans.It integrates the strong local feature extraction capability of multi-scale U-Net and strong global context dependency extraction capability of Transformer to improve the overall detection performance of MSU-Trans.Experiments on an ARSI set show that MSU-Trans has higher detection accuracy than U-Net,multi-scale U-Net and attention U-Nets,with the accuracy over 95%.This method provides some technical support for ARSIAD.
关 键 词:航空遥感图像飞机检测 多尺度U-Net TRANSFORMER 多尺度U-Net与Transformer
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49