检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂秀山 巩蕊 董飞[2] 郭杰 马玉玲 NIE Xiushan;GONG Rui;DONG Fei;GUO Jie;MA Yuling(School of Computer Science and Technology,Shandong Jianzhu University,Jinan 250101,Shandong,China;School of Journalism and Communication,Shandong Normal University,Jinan 250358,Shandong,China)
机构地区:[1]山东建筑大学计算机科学与技术学院,山东济南250101 [2]山东师范大学新闻与传播学院,山东济南250358
出 处:《山东大学学报(工学版)》2024年第3期1-11,共11页Journal of Shandong University(Engineering Science)
基 金:国家自然科学基金资助项目(62176141,62176139,61876098);山东省杰出青年自然科学基金资助项目(ZR2021JQ26);山东省自然科学基金资助项目(ZR2021QF119)。
摘 要:传统的视频场景分类方法习惯于从视觉模态中提取表现图像场景的特征,结合支持向量机等有监督学习方法,实现对某些类别的场景分类。随着各种短视频在各大平台迅速涌现,基于短视频特性的场景特征表示越来越受到研究者们的关注。由于短视频数据具有噪声、数据缺失、各模态语义强度不一致等问题,导致传统的视频场景表征方法无法学习具有丰富语义的短视频场景表征。近年来,部分短视频场景分类的研究考虑上述挑战,并提出相应的方法。本研究综述短视频场景分类的研究现状,介绍短视频场景特征表示和分类方法,对不同数据集上的场景分类方法进行分析。针对现有方法存在的问题,分析未来短视频场景分类中需要解决的挑战性问题。Traditional video scene classification methods were used to extract the features of image scenes from the visual modality,and combined with supervised learning methods such as support vector machine to achieve scene classification of certain categories.With the rapid emergence of various micro-videos on major platforms,the scene feature representation based on the characteristics of micro-videos had attracted more and more attention of researchers.Due to the problems of micro-video data such as noise,data loss,and inconsistent semantic intensity of each modality,these issues resulted in traditional methods for representing video scenes being unable to learn micro-video scene representations with rich semantics.In recent years,the research of some micro-video scene classification had considered the above challenges and proposed corresponding methods based on micro-video scene classification.This study reviewed the research status of micro-video scene classification,introduced the feature representation and classification methods of micro-video scene,and analyzed the scene classification methods on different datasets.Aiming at the problems existing in the existing methods,the challenging problems to be solved in the future micro-video scene classification were analyzed.
关 键 词:视频场景 特征表示 短视频场景分类 多模态融合 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30