检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘莹莹 李昱衡 何江 任宇昕 董洋 Liu Yingying;Li Yuheng;He Jiang;Ren Yuxin;Dong Yang(Guanbaoshan Mining Co.,Ltd.of Angang Group,Anshan,China;Yanqianshan Branch of Angang Mining Co.,Ltd.,Anshan,China;University of Science and Technology Beijing,Beijing,China;Northeastern University,Shenyang,China)
机构地区:[1]鞍钢集团关宝山矿业有限公司,辽宁鞍山 [2]鞍钢集团矿业有限公司眼前山分公司,辽宁鞍山 [3]北京科技大学,北京 [4]东北大学,辽宁沈阳
出 处:《科学技术创新》2024年第16期74-77,共4页Scientific and Technological Innovation
摘 要:矿用电机车是矿山运输的主要设备,由于井下运行环境复杂,照明条件有限,无人驾驶的电机车容易与前进方向上的障碍物碰撞导致脱轨,从而影响电机车的运行效率和矿山的正常生产。因此,能够精准地识别出机车前进方向上威胁机车正常行驶的障碍物,对提高电机车的运行效率、保障作业人员的人身安全具有重要意义。ConvNext模型特征提取效果好,模型的训练速度较快,目标检测的检出率高,能达到预期效果。故本文尝试采用ConvNext来对电机车行驶过程中的障碍物进行检测实验。实验结果与预期效果相同,ConvNext算法的检测精度符合要求,可精准检测机车运行各种复杂环境下的障碍物,mAP可达到87.5%。Mine electric locomotive is the main equipment for mine transportation.Because of the complex underground operating environment and limited lighting conditions,unmanned electric locomotive is easy to collide with obstacles in the forward direction and cause derailment,thus affecting the operating efficiency of electric locomotive and the normal production of mine.Therefore,it is of great significance to accurately identify the obstacles that threaten the normal running of the locomotive,which is of great significance to improve the operating efficiency of the electric locomotive and ensure the personal safety of the operators.ConvNext model has good feature extraction effect,fast training speed and high detection rate of target detection,which can achieve the expected results.Therefore,this paper attempts to use ConvNext to detect obstacles in the process of electric locomotive driving.The experimental results are the same as expected,and the detection accuracy of ConvNext algorithm meets the requirements,which can accurately detect obstacles in various complex environments when locomotives are running,and the mAP can reach 87.5%.
关 键 词:矿用电机车 障碍物检测 ConvNext 深度学习
分 类 号:TD524[矿业工程—矿山机电] TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7