检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁铁定[1,2] 李祯 LU Tieding;LI Zhen(School of Surveying and Geoinformation Engineering,East China University of Technology,Nanchang 330013,China;Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake,Ministry of Natural Resources,Nanchang 330013,China)
机构地区:[1]东华理工大学测绘与空间信息工程学院,江西南昌330013 [2]自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西南昌330013
出 处:《测绘学报》2024年第6期1077-1085,共9页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(42061077,42374040)。
摘 要:传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。Traditional GNSS vertical time series prediction and interpolation methods only consider time variables and have obvious limitations.This study takes into account the impact of geophysical effects and constructs a regression problem using temperature,atmospheric pressure,polar motion,and GNSS vertical time series data,uses the adaptive boost(AdaBoost)algorithm for modeling.To verify the prediction and interpolation performance of the model,the vertical time series from 4 GNSS stations were selected for analysis.The modeling experiment shows that compared to the Prophet model,the fitting accuracy of AdaBoost model has been improved by 35%.The prediction results indicate that within a 12 month prediction period,the MAE values of the AdaBoost model at four GNSS stations are approximately 4.0~4.5 mm,and the RMSE values are approximately 5.0~6.0 mm.The interpolation experiment shows that compared to the cubic spline interpolation method,the accuracy of AdaBoost interpolation model has been improved by about 15%~28%.Our experiments have shown that the AdaBoost model considering geophysical effects can be applied to the prediction and interpolation of GNSS vertical time series.
关 键 词:GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7