检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟振茂 ZHONG Zhenmao(Academy of Engineering,ShangHai Installation Engineering Group Co.,Ltd.,Shanghai 201208,China)
机构地区:[1]上海市安装工程集团有限公司工程研究院,上海201208
出 处:《声学技术》2024年第3期426-431,共6页Technical Acoustics
摘 要:文章针对旋转机械设备维护和噪声监测治理的需求,提出了一种基于电机噪声信号和图卷积神经网络的故障诊断算法。该算法对时域数据进行傅里叶变换,将变换后的频域数据转化为图数据,利用提出的新型图卷积神经网络结构对图数据进行训练并分类。搭建电机故障实验平台,完成了6种不同状态的电机噪声信号采集与实验验证。实验结果表明,图卷积神经网络能根据有限的电机噪声信号有效识别出电机故障,并具有一定的小样本学习能力,能够在样本量较少的情况下进行故障分类。对比分析表明,该算法分类准确率优于K最近邻-图算法、一维卷积神经网络、自动编码器和支持向量机等其他算法,为实际工程应用提供了参考。A fault diagnosis algorithm based on motor noise signals and graph convolutional neural network(GCNN)is proposed for the needs of maintenance and noise monitoring and control of rotating machinery equipment.This algorithm transforms the time domain data into graph data by Fourier transform,and uses the proposed new graph convolutional neural network structure to train and classify the graph data.The experimental platform of motor fault is built,and the collection and experimental verification of motor noise signal in 6 different states are completed.The experimental results show that GCNN can effectively identify motor faults according to the limited motor noise signals,and has a certain small sample learning ability,and can classify faults under the condition of a small sample size.Comparative analysis shows that the accuracy of this algorithm is better than other algorithms such as K nearest neighbor graph algorithm,1D convolutional neural network,automatic encoder and support vector machine,which provides a reference for practical engineering applications.
关 键 词:电机噪声 电机故障诊断 图卷积神经网络 小样本学习
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49