多维融合脑电特征的脑卒中分类预测  

Classification prediction of stroke by multi⁃dimensional fusion of EEG feature

在线阅读下载全文

作  者:刘喜瑞 李凤莲 张雪英 胡风云[2] 贾文辉[2] 于放 LIU Xirui;LI Fengian;ZHANG Xueying;HU Fengyun;JIA Wenhui;YU Fang(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi Provincial People’s Hospital,Taiyuan 030024,China)

机构地区:[1]太原理工大学信息与计算机学院,山西太原030024 [2]山西省人民医院,山西太原030024

出  处:《电子设计工程》2024年第14期174-179,184,共7页Electronic Design Engineering

基  金:国家自然科学基金资助项目(62171307)。

摘  要:为实现对脑卒中疾病的高效分类预测,提出一种基于多维融合脑电特征的脑卒中分类预测方法。提出基于优化经验模态分解的多重分形去趋势波动分析算法,采用Pearson相关系数优化经验模态分解实现对脑电信号趋势项的选取,以解决多重分形去趋势波动分析中趋势项确定难、不连续等问题。基于分层模糊熵提出不对称熵特征和不对称熵指数,分析两类脑卒中脑电信号整体和局部熵值的差异性。对多维融合脑电特征进行脑卒中分类预测,结果表明,提出的多维融合脑电特征分类预测性能优异,准确率达到94.90%,特异性达到99.89%,表现出较强的脑卒中分类预测性能。To realize efficient classification prediction of stroke,a method of stroke classification prediction based on multi-dimensional fusion of EEG feature is proposed.An improved multifractal detrending fluctuation analysis algorithm based on optimized empirical mode decomposition is proposed.Pearson correlation coefficient is used to optimize the empirical mode decomposition to select the trend items of EEG signals,to solve the problems of difficult and discontinuous trend item determination in multifractal detrending fluctuation analysis.Based on hierarchical fuzzy entropy,the asymmetric entropy feature and asymmetric entropy index are proposed to analyze the differences between the global and local entropy values of EEG signals in two types of stroke.The multi-dimensional fusion of EEG feature is used for stroke classification.The results show that the proposed multi-dimensional fusion of EEG feature classification performance is excellent,with an accuracy of 94.90%and a specificity of 99.89%,showing a strong stroke classification performance.

关 键 词:脑卒中 经验模态分解 多重分形去趋势波动分析 不对称熵特征 不对称熵指数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象