基于激光视觉的3D舞美虚拟人物影像自动化识别系统  

Automated recognition system for 3D dance beauty virtual character images based on laser vision

在线阅读下载全文

作  者:胡巍 王英杰 HU Wei;WANG Yingjie(Academy of Military Culture,National Defence University of PLA,Beijing 100081,China;Space Engineering University,Beijing 101416,China)

机构地区:[1]中国人民解放军国防大学军事文化学院,北京100081 [2]航天工程大学,北京101416

出  处:《电子设计工程》2024年第14期180-184,共5页Electronic Design Engineering

摘  要:针对3D舞美虚拟人物影像易受到成像条件干扰,导致人物姿态识别误差大的问题,设计基于激光视觉的3D舞美虚拟人物影像自动化识别系统。使用线结构光视觉三维测量装置,采集表演人物的激光视觉图像后,以平行投影的方式,重构3D舞美虚拟人物影像;通过基于谱系聚类的关键姿态轮廓特征提取方法,提取影像中关键姿态轮廓特征,输入基于HCRF的3D舞美虚拟人物影像人体姿态识别模型,计算人体姿态动作类型的条件概率,实现3D舞美虚拟人物影像自动化识别。实验结果表明,该系统对3D舞美虚拟人物影像中,行走、跑步、跳跃、跌倒、身体倾斜五种姿态类型自动化识别后,识别结果的交并比最小值为0.986,识别结果与真实姿态动作类型匹配。In order to solve the problem that the 3D virtual figure image is susceptible to the interference of imaging conditions,which leads to the large error of character pose recognition,an automatic recognition system of 3D virtual figure image based on laser vision is designed.Using linear structured light vision 3D measuring device,the laser vision image of the performer is collected,and the 3D virtual figure image is reconstructed by parallel projection.Through the key pose contour feature extraction method based on lineage clustering,the key pose contour features in the image are extracted,and the human pose recognition model based on HCRF is input to calculate the conditional probability of the human pose action type,and the automatic recognition of 3D stage virtual figure image is realized.The experimental results show that after the automatic recognition of the five pose types of walking,running,jumping,falling and body tilt in the 3D dance beauty virtual figure image,the minimum crossover ratio of the recognition result is 0.986,and the recognition result matches the real pose type.

关 键 词:激光视觉 3D舞美 虚拟人物影像 姿态轮廓特征 姿态识别 

分 类 号:TN98[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象