广义Erdös-Straus猜想的互异正整数解的存在性  

Existence of Distinct Positive Integer Solutions to a Generalized Form of Erd?s-Straus Conjecture

在线阅读下载全文

作  者:尤利华[1] 李佳姻 袁平之[1] You Lihua;Li Jiayin;Yuan Pingzhi(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China)

机构地区:[1]华南师范大学数学科学学院,广州510631

出  处:《数学理论与应用》2024年第2期65-79,共15页Mathematical Theory and Applications

基  金:supported by the National Natural Science Foundation of China(No.12371347)。

摘  要:本文研究当n>k≥2且t≥2时方程k/n=1/x_(1)+1/x_(2)+…+1/x_(t)的互异正整数解,证明若方程有正整数解,则至少有一互异正整数解;当k=5,t=3时,除了n≡1,5041,6301,8821,13861,15121(mod 16380)外方程有一互异正整数解;当n≥3,t=4时,除了n≡1,81901(mod 163800)外方程有一互异正整数解;并进一步指出对于任意的n(>k),当t≥k≥2时,方程至少有一互异正整数解.In this paper,we study the(distinct)positive integer solution of the equation k/n=1/x_(1)+1/x_(2)+…+1/x_(t)with n>k≥2 and t≥2.We show that the above equation has at least one distinct positive integer solution if it has a positive integer solution.When k=5,we show the above equation has at least one distinct positive integer solution for all n≥3 except possibly when n≡1,5041,6301,8821,13861,15121(mod 16380)with t=3,and for all n≥3 except possibly when n≡1,81901(mod 163800)with t=4.Furthermore,we point out that the above equation has at least one distinct positive integer solution for all n(>k)when t≥k≥2.

关 键 词:不定方程 正整数解 互异 Erd?s-Straus 猜想 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象