检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜明瀚 颜红柱[2] 张恩榜 宋黎涛[1] JIANG Minghan;YAN Hongzhu;ZHANG Enbang;SONG Litao(Department of Radiology,Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine,Shanghai 200137,China;Department of pathology,Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine,Shanghai 200137,China)
机构地区:[1]上海中医药大学附属第七人民医院医学影像科,上海200137 [2]上海中医药大学附属第七人民医院病理科,上海200137
出 处:《医学影像学杂志》2024年第6期85-89,共5页Journal of Medical Imaging
摘 要:目的探讨评估前列腺癌患者基于双参数MRI的纹理参数与Gleason评分(GS)之间的相关性,并评估纹理特征在区分临床显著性前列腺癌(CSPC,GS≥7)和非CSPC的诊断性能。方法选取96例经根治性前列腺切除术或活检证实为前列腺癌的患者,同时分为训练组(55例)和验证组(41例)。所有患者术前均行3.0T MR检查,使用专用软件对轴位T2WI和ADC图覆盖整个肿瘤体积进行纹理分析。计算相关系数以评估纹理参数与GS之间的相关性,并对显著参数进行多元回归分析。ROC曲线分析预测CSPC的最佳临界值。结果在训练组数据集中,ADC图的灰度共生矩阵(GLCM)熵是GS的唯一显著指标(决定系数R^(2)=0.424,P=0.002)。ADC图GLCM熵的AUC为0.841(95%CI 0.726~0.928),准确度、敏感度、特异度分别为83%、88%、73%。当将阈值取2.91应用于验证数据集时,其准确度、灵敏度、特异度分别为91%、96%、71%。结论ADC图的GLCM熵与GS相关,其区分CSPC和非CSPC的准确率为83%。Objective To evaluate the correlation between biparametric MRI texture parameters and Gleason score(GS)in prostate cancer patients,and to evaluate the diagnostic performance of texture features for differentiating clinically significant prostate cancer(CSPC,GS≥7)from non-CSPC.Methods 96 prostate cancer patients confirmed by radical prostatectomy or biopsy were divided into training set(n=55)and validation set(n=41).All patients underwent 3T-MRI examination,and texture analysis was performed on axial T2WI and ADC maps covering the entire tumor volume using special software.Correlation coefficients were calculated to evaluate the correlation between texture parameters and GS,and multiple regression analysis was further performed on significant parameters.ROC curve was used to predict the best critical value for CSPC.Results In the training dataset,the gray level co-occurrence matrix(GLCM)entropy of the ADC map was the only significant indicator of GS(coefficient of determination R^(2)=0.424,P=0.002).The AUC of the GLCM entropy on ADC was 0.841(95%CI=0.726-0.928),with an accuracy of 83%,a sensitivity of 88%,and a specificity of 73%.When a threshold of 2.91 was applied to the validation dataset,the accuracy,sensitivity,and specificity were 91%,96% and 71%,respectively.Conclusion The GLCM entropy on ADC map is correlated with GS,and its accuracy in distinguishing CSPC from non-CSPC is 83%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.59.50