检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张军[1] 王凯 刘佳喜[1] 李根 赵岩 王鹏[1] 耿伟 张浩 陈欢 ZHANG Jun;WANG Kai;LIU Jiaxi;LI Gen;ZHAO Yan;WANG Peng;GENG Wei;ZHANG Hao;CHEN Huan(Tianjin Rail Transit Co.,Ltd.,300011,Tianjin,China;Tianjin Keyvia Electric Co.,Ltd.,300392,Tianjin,China)
机构地区:[1]天津市地下铁道集团有限公司,天津300011 [2]天津凯发电气股份有限公司,天津300392
出 处:《城市轨道交通研究》2024年第7期16-20,26,共6页Urban Mass Transit
摘 要:[目的]为了提高列车运行效率,需对地铁牵引能耗进行监测,并建立相关能耗模型对地铁牵引能耗进行预测分析。[方法]介绍了灰色预测模型和BP(反向传播)神经网络的基本原理;以天津某典型地铁车站2021年6月的牵引日用电量数据为例,采用灰色关联分析法筛选出与地铁牵引日用电量关联度大的影响因素,基于GM(1,1)灰色预测模型预测出短期牵引日用电量;将所筛选出的关联度大的影响因素、GM(1,1)灰色预测模型预测的短期牵引日用电量及相邻历史牵引日用电量数据,作为BP神经网络模型中的输入量进行训练,建立GM-BP灰色神经网络模型,并生成所需短期地铁牵引日用电量预测数据。[结果及结论]与传统GM(1,1)灰色预测模型和BP神经网络模型相比,通过GM-BP灰色神经网络模型预测的短期牵引日用电量预测误差有明显的改善,能够作为有效的地铁牵引能耗数据进行短期预测数据分析。[Objective]In order to improve train operational efficiency,it is necessary to monitor metro traction power consumption and establish a relevant energy consumption model for prediction analysis of metro traction power consumption.[Method]The basic principles of grey prediction model and BP(backpropagation)neural network are introduced.Taking the traction daily electricity consumption data for a typical metro station in Tianjin in June 2021 as example,the grey correlation analysis method is used to select the influencing factors with high correlation to the daily traction power consumption of metro.Based on the GM(1,1)grey prediction model,the short-term traction daily power consumption is predicted.The selected influencing factors with high correlation,the short-term traction daily power consumption predicted by GM(1,1)grey model,and the adjacent historical traction daily power consumption data are used as input for training in BP neural network model to establish the GM-BP grey neural network model.The required short-term metro traction daily power consumption prediction data is generated.[Result&Conclusion]Compared with conventional GM(1,1)grey prediction model and BP neural network model,the prediction error of short-term traction daily power consumption predicted by the GM-BP grey neural network model shows significant improvement,and can be used as effective metro traction power consumption data for short-term prediction data analysis.
分 类 号:TM714[电气工程—电力系统及自动化] U239.5[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7