检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹红 CAO Hong(School of Accounting And Finance,Zhejiang Business College,Hangzhou,China,310000)
机构地区:[1]浙江商业职业技术学院财会金融学院,杭州310000
出 处:《福建电脑》2024年第7期53-57,共5页Journal of Fujian Computer
基 金:浙江省教育厅科研项目“基于改进YOLOv3与注意力机制的复杂SAR图像船舰快速检测研究”(No.Y202249939)资助。
摘 要:复杂场景SAR图像容易受地物和强散射干扰的影响。为提高船舰目标检测算法的效率和精确率,本文提出一种基于改进YOLOv3和注意力机制的检测网络方案。该检测网络主要由目标筛选网络P-FCN和目标精确检测网络S-SSD组成。PFCN是一个轻量型的全卷积网络,用于快速筛选船舰目标。S-SSD是一个改进的YOLOv3网络,通过多层次特征融合系统结合双通道注意力机制CBAM,结合P-FCN对船舰的目标定位实现了对船舰目标的精确检测。实验结果表明,本文算法对于复杂场景SAR图像船舰目标具有较好的检测性能。SAR images in complex scenes are easily affected by terrain and strong scattering interference.To improve the efficiency and accuracy of ship target detection algorithms,this paper proposes a detection network scheme based on improved YOLOv3 and attention mechanism.The detection network mainly consists of the target screening network P-FCN and the target precise detection network S-SSD.P-FCN is a lightweight fully convolutional network used for rapid screening of ship targets.S-SSD is an improved YOLOv3 network that achieves precise detection of ship targets through a multi-level feature fusion system combined with dual channel attention mechanism CBAM and P-FCN for ship target localization.The experimental results show that the algorithm proposed in this paper has good detection performance for ship targets in complex SAR images.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15