检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任伟建[1,2] 计妍 康朝海 REN Wei-jian;JI Yan;KANG Chao-hai(Department of Electrical Information Engineering,Northeast Petroleum University,Daqing Heilongjiang 163318,China;Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control,Daqing Heilongjiang 163318,China)
机构地区:[1]东北石油大学电气信息工程学院,黑龙江大庆163318 [2]黑龙江省网络化与智能控制重点实验室,黑龙江大庆163318
出 处:《计算机仿真》2024年第6期390-395,共6页Computer Simulation
基 金:国家自然科学基金资助项目(61933007,61873058);黑龙江省自然科学基金(F2018004,F2018005)。
摘 要:在石油领域命名实体识别的任务中,提出了基于XLBIC(XLNet-BiGRU-IDCNN-CRF)的命名实体识别模型。首先采用XLNet预训练模型获取丰富且准确的词向量信息,将获取的词向量信息送入BiGRU和IDCNN网络中进行特征提取。针对膨胀卷积网络(IDCNN)获取特征维度不高,模型计算速度较慢的问题,提出在IDCNN网络中引入门控机制,实现信息的多通道传输和流量控制,提高模型的计算速度。实验表明XLBIC命名实体识别模型在自建石油开采数据集上性能相比其它模型有提高,准确率在90%以上。In the task of named entity recognition in the petroleum field,a named entity recognition model based on XLBIC(XLNET-BigRU-IDCNN-CRF)is proposed.Firstly,the XLNet pretraining model was used to obtain rich and accurate word vector information,and then the obtained word vector information was sent to BiGRU and IDCNN networks for feature extraction.Aiming at the problem of low feature acquisition dimension and slow model calculation speed of the dilatative convolutional network(IDCNN),a gating mechanism was introduced in the IDCNN network to realize multi-channel information transmission and flow control and improve the model calculation speed.Experimental results show that the XLBIC named entity recognition model has better performance than other models in the self-built oil production data set,and the accuracy is more than 90%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30