基于改进二进制PSO配电网动态重构  

Dynamic Reconfiguration of Distribution Network Based on Improved Binary Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:武晓朦 李晨晨 党博 WU Xiaomeng;LI Chenchen;DANG Bo(Key Laboratory of Shaanxi Province for Gas-Oil Logging Technology,Xi’an Shiyou University,Xi’an,Shaanxi 710065,China)

机构地区:[1]西安石油大学电子工程学院陕西省油气井测控技术重点实验室,陕西西安710065

出  处:《西安石油大学学报(自然科学版)》2024年第4期124-131,共8页Journal of Xi’an Shiyou University(Natural Science Edition)

基  金:陕西省创新计划项目(2020KJXX-018);陕西省科技计划基础研究项目(2021JM-404);西安石油大学研究生创新与实践能力培养项目(YCS21213202)。

摘  要:随着分布式电源的不断接入,配电网中的负荷和电源都在不断地变化,传统的计算方法存在收敛速度慢,易陷入局部最优的问题。本文通过应用信息熵对日负荷曲线进行时段划分,以网络损耗最小为目标函数建立配电网重构模型,针对传统PSO收敛较慢,易陷入局部最优的问题,提出结合禁忌搜索算法对PSO进行改进,通过设置禁忌表提高算法全局搜索能力;结合破圈法对拓扑结构进行约束,减少无效拓扑的出现,加快算法的收敛速度。通过IEEE33节点配电系统重构仿真,验证改进粒子群算法的可行性和有效性。With the continuous access of distributed power supplies,the load and power supplies in the distribution network are constantly changing.Traditional load calculation methods have the problem of slow convergence speed and easy to fall into local optima.Therefore,in this paper it is proposed that the daily load curve is divided into time periods by using information entropy,and a distribution network reconstruction model is established with the objective function of minimizing network loss.In response to the problem of slow convergence and tendency to fall into local optima in traditional PSO,the PSO is improved based on the tabu search algorithm.The global search ability of the algorithm is improved by setting a tabu table,and the topology structure is constrained by the breaking circle way to reduce the occurrence of invalid topologies and accelerate the convergence speed of the algorithm.The feasibility and effectiveness of the improved particle swarm optimization algorithm are verified through the reconstruction simulation of IEEE33 node distribution system.

关 键 词:配电网 分布式电源 动态重构 禁忌搜索算法 粒子群算法 

分 类 号:TM713.4[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象