检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝建[1] 刘河清 刘建康[1] 吕家庆 郑义宁 刘建荣 HAO Jian;LIU Heqing;LIU Jiankang;LYU Jiaqing;ZHENG Yining;LIU Jianrong(College of Energy and Mining Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590,China;Guotun Coal Mine,Shandong Energy Group Luxi Mining Co.,Ltd.,Heze,Shandong 274700,China;Academician(Expert)Workstation,Inner Mongolia Shanghaimiao Mining Co.,Ltd.,Erdos,Inner Mongolia 016299,China)
机构地区:[1]山东科技大学能源与矿业工程学院,山东青岛266590 [2]山东能源集团鲁西矿业有限公司郭屯煤矿,山东菏泽274700 [3]内蒙古上海庙矿业有限责任公司院士专家工作站,内蒙古鄂尔多斯016299
出 处:《岩石力学与工程学报》2024年第6期1406-1424,共19页Chinese Journal of Rock Mechanics and Engineering
基 金:国家自然科学基金资助项目(52174121,52204099);山东省自然科学基金资助项目(ZR2022QE203)。
摘 要:为了研究钻进振动信号与岩体地质力学参数之间的响应关系,准确、快速地感知、预测岩石单轴抗压强度,开展基于钻进振动信号的岩石单轴抗压强度预测研究。以室内钻取花岗岩、石灰岩、砂岩和煤四类原岩(煤)试件实验为基础,结合傅里叶变换和振动信号降噪方法构建GA-BP神经网络模型,并对比分析降噪前后以及不同降噪方法模型的预测性能。结果表明:钻进振动信号与岩石单轴抗压强度之间有响应关系,应用钻进振动信号可预测岩石单轴抗压强度;采用Adobe Audition软件对振动信号进行降噪处理的GA-BP神经网络预测模型决定系数R2为0.838,均方根误差为7.063 MPa,平均绝对误差为5.347 MPa,其结果优于原始预测模型和一般降噪方法预测模型;与原始预测模型相比,最优降噪模型在预测精度上提升了6.3%,均方根误差减小1.954 MPa,平均绝对误差减小1.621 MPa;同一预测模型中不同岩性的预测效果存在一定差异。降噪信号GA-BP神经网络预测模型对单轴抗压强度有较优秀的预测能力,所用方法可为在岩体地质力学参数随钻测量方面提供基础。In order to study the response relationship between the vibration signal with drilling and the geomechanical parameters of the rock mass,and to perceive and predict the uniaxial compressive strength of the rock accurately and quickly,a research on the prediction of uniaxial compressive strength of the rock based on the vibration signal with drilling was carried out.Based on indoor drilling experiments of four types of raw rock(coal)specimens,namely granite,limestone,sandstone and coal,the GA-BP neural network model was constructed by combining Fourier transform and vibration signal noise reduction methods,and the prediction performance of the model before and after the noise reduction,as well as the models with different noise reduction methods,were compared and analyzed.The results show that there is a responsive relationship between the vibration signal with drilling and the uniaxial compressive strength of rock,and the uniaxial compressive strength of rock can be predicted by using the vibration signal while drilling.The GA-BP neural network prediction model using Adobe Audition software to denoise the vibration signal has a determination coefficient R2 of 0.838,a root mean square error of 7.063 MPa,and an average absolute error of 5.347 MPa.The results are better than the original prediction model and the general noise reduction method prediction model.Compared with the original prediction model,the prediction accuracy of the optimal noise reduction model is improved by 6.3%,the root mean square error is reduced by 1.954 MPa,and the average absolute error is reduced by 1.621 MPa.There are some differences in the prediction effect of different lithology in the same prediction model.The GA-BP neural network prediction model of noise reduction signal has excellent prediction ability for uniaxial compressive strength.The method can provide a basis for the measurement of rock mass geomechanical parameters while drilling.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236