基于WOA-Stacking集成学习的注塑产品尺寸预测  

Injection molding product size prediction based on WOA-Stacking ensemble learning method

在线阅读下载全文

作  者:陈忠杭 王舟挺 沈加明 胡燕海[1] 倪德香 CHEN Zhonghang;WANG Zhouting;SHEN Jiaming;HU Yanhai;NI Dexiang(School of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211,China;Ningbo Hwamda Machinery Manufacturing Co.,Ltd.,Ningbo 315000,China)

机构地区:[1]宁波大学机械工程与力学学院,浙江宁波315211 [2]宁波华美达机械制造有限公司,浙江宁波315000

出  处:《工程塑料应用》2024年第6期135-141,163,共8页Engineering Plastics Application

基  金:国家自然科学基金项目(51705263)。

摘  要:在现有的基于机器学习的注塑产品尺寸预测模型中,存在单一模型预测精度不高的问题,为了提高实时监测注塑产品尺寸变化的精度,提出了一种基于鲸鱼优化算法(WOA)优化Stacking集成学习的注塑产品尺寸预测方法。首先,整合注塑过程收集到的数据,使用3σ准则进行异常值筛选,再通过随机森林法和互信息法选取关键的特征,作为后续模型的输入特征;其次,在Stacking集成学习框架中,选择K近邻、随机森林和轻量级梯度提升机作为基学习器,选择弹性网络回归作为元学习器,使用WOA优化各个基学习器中的超参数,构建WOA-Stacking集成学习预测模型;最后,将所提的模型应用到注塑产品尺寸预测并与其他模型进行对比分析,以验证本方法的有效性。以第四届工业大数据创新竞赛数据为例,在包含3种集成模型和3种单一模型的对比实验中,选择产品的三维尺寸作为预测目标,实验结果表明WOA-Stacking集成学习模型具有更高的预测精度和拟合能力。In the existing machine learning-based injection molding product size prediction models,there is the problem that the prediction accuracy of a single model is not high.In order to improve the accuracy of real-time monitoring of injection molding product dimensional changes,an injection molding product size prediction method based on whale optimization algorithm(WOA)optimized Stacking ensemble learning was proposed.First,the data collected from the injection molding process were integrated,the outliers were screened using the 3σcriterion,and the key features were selected by random forest and mutual information method as the input features for the subsequent model.Second,in the Stacking ensemble learning framework,K-nearest neighbor,random forest and light gradient boosting machine were selected as the base learners,and elastic net regression was selected as the meta learner,and WOA was used to optimize the hyperparameters in each base learner to construct the WOA-Stacking ensemble learning prediction model.Finally,the proposed model was applied to the injection molding product size prediction,and then other models were compared and analyzed to verify the effectiveness of the present method.Taking the data of the 4th Industrial Big Data Innovation Competition as an example,in the comparison experiment containing three ensemble models and three single models,the three-dimensional size of the products were selected as the prediction target,and the experimental results showed that the WOA-Stacking ensemble learning model had higher prediction accuracy and fitting ability.

关 键 词:注塑 尺寸预测 鲸鱼优化算法 Stacking集成学习 特征选择 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象