手过头静态作业的上肢肌肉疲劳特性研究  被引量:2

Research on muscle fatigue of upper limb in overhead static work

在线阅读下载全文

作  者:杨延璞[1] 安为岚 韩钟剑[2] 范昱 杨沁夏 YANG Yanpu;AN Weilan;HAN Zhongjian;FAN Yu;YANG Qinxia(Key Laboratory of Road Construction Technology and Equipment of MOE,Chang'an University,Xi'an 710064,China;The 20th Research Institute of China Electronics Technology Group Corporation,Xi'an 710068,China)

机构地区:[1]长安大学道路施工技术与装备教育部重点实验室,陕西西安710064 [2]中国电子科技集团第二十研究所,陕西西安710068

出  处:《西北工业大学学报》2024年第3期567-576,共10页Journal of Northwestern Polytechnical University

基  金:基础加强计划技术领域基金(2021-JCJQ-JJ-1018);长安大学中央高校基本科研业务费(300102253107);陕西省创新能力支撑计划(2020PT-014)资助。

摘  要:为探究手过头不同高度下静态作业的上肢肌肉疲劳特性,通过实验设计采集了被试的表面肌电信号(surface electromyography,sEMG)及基于Borg CR-10量表的主观疲劳状态,研究了sEMG的时域与频域特征处理方法,并利用多分类支持向量机(support vector machine,SVM)识别肌肉疲劳状态。通过对肌肉贡献率、主客观肌肉疲劳特征的相关性、不同高度下的肌肉疲劳累积排序及肌肉疲劳分类识别进行分析,结果表明:肌肉平均贡献率超过10%的肌肉为肱二头肌、三角肌与斜方肌,且其累积贡献率超过70%;对疲劳累积程度在3个高度下排序,肱二头肌和斜方肌为H_(3)>H_(2)>H_(1),三角肌为H_(2)>H_(3)>H_(1);随着手过头静态作业时间增加,上肢肌肉疲劳逐渐积累,时域特征值增加、频域特征值减小且其变化具有一致性;多分类SVM对手过头静态作业中的上肢肌肉疲劳识别准确率大于90%。To explore the muscle fatigue features of upper limb at different heights in overhead static work,an experiment was conducted to obtain the surface electromyography(sEMG)of subjects and their subjective fatigue state based on Borg CR-10 scale.The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine(SVM)was used to identify the state of muscle fatigue.By analyzing the muscular contribution,the correlation of subjective ratings and objective muscle fatigue features,ranking order of muscle fatigue accumulation,and muscular fatigue classification and identification,the results show that the muscles contribute above 10% on average are the biceps,deltoid and trapezius,and their cumulative contribution exceeds 70%;and the ranking orders of muscle fatigue accumulation in three heights are H_(3)>H_(2)>H_(1) for biceps and trapezius and H_(2)>H_(3)>H_(1) for deltoid;and with the time increase of overhand static operation,the muscle fatigue of upper limb gradually accumulates,resulting in the value of time domain features increases and the frequency domain features decreases,and their changes are consistent;and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work.

关 键 词:人机工效 手过头静态作业 肌肉疲劳 表面肌电信号 支持向量机 

分 类 号:TB472[一般工业技术—工业设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象