检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闵锋[1] 毛一新 况永刚 彭伟明 郝琳琳 吴波[1] MIN Feng;MAO Yixin;KUANG Yonggang;PENG Weiming;HAO Linlin;WU Bo(Hubei Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China)
机构地区:[1]武汉工程大学智能机器人湖北省重点实验室,武汉430205
出 处:《计算机工程与应用》2024年第14期219-227,共9页Computer Engineering and Applications
基 金:国家自然科学基金(62171328);武汉工程大学研究生教育创新基金(CX2022333)。
摘 要:最近的研究表明,度量学习中的深度特征匹配方法,结合大规模、多样化的训练数据,可以显著增强人员再识别的泛化能力。然而,许多现有的方法会产生大量的内存和计算成本,如分类参数或类记忆学习等。为解决上述问题,提出了一种新的基于相关性图采样(correlation graph sampler,CGS)的泛化行人重识别算法,CGS的基本思想是在训练开始时使用局部敏感哈希函数(locality-sensitive Hashing,LSH)和特征度量为所有类构造最近邻关系图。这确保了每一小批训练样本由随机选择的基类和与基类具有相似性的近邻类组成,以提供信息量大且具有挑战性的学习示例,提高行人重识别模型的判别性学习能力。CGS的采样原理会受主干网提取的特征质量影响,因此CGS采样能力会随着主干网的训练而增强,具有可学习性。通过在大规模数据集(包括CUHK03、Market-1501和MSMT17)上交叉评估该方法,广泛的实验结果证实了该方法的有效性,并展示了其在行人重识别应用中的潜力。Recent study has shown that deep feature matching methods in metric learning,combined with large-scale and diverse training data,can significantly enhance the generalization ability of person re-identification.However,many existing methods generate large memory and computational costs,such as classification parameters or class memory learning.To address these issues,a new generalization person re-identification method based on correlation graph sampler(CGS)is proposed.The basic idea of CGS is to construct a nearest neighbor relationship graph for all classes using local sensitive Hashing(LSH)and feature metrics at the beginning of training.This ensures that each small batch of training samples is composed of randomly selected base classes and near-neighboring classes that are similar to the base classes to provide informative and challenging learning examples and improve the discriminative learning ability of person re-identification models.The sampling principle of CGS is influenced by the quality of features extracted by the backbone network,and therefore,the sampling ability of CGS can be enhanced with the training of the backbone network and has learnability.Through cross-evaluation of this method on large-scale datasets(including CUHK03,Market-1501,and MSMT17),extensive experimental results demonstrate the effectiveness of this method and showcase its potential in person re-identification applications.
关 键 词:行人重识别 度量学习 相关性图采样 局部敏感哈希函数
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31