检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许洪军 刘艺舟 Giovanni Finocchio Kang LWang 于国强 Hongjun Xu;Yizhou Liu;Giovanni Finocchio;Kang L.Wang;Guoqiang Yu(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China;RIKEN Center for Emergent Matter Science(CEMS),Wako 351-0198,Japan;Department of Mathematical and Computer Sciences,Physical Sciences and Earth Sciences,University of Messina,Messina 98166,Italy;Department of Electrical Engineering,University of California,Los Angeles CA 90095,USA)
机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China [2]RIKEN Center for Emergent Matter Science(CEMS),Wako 351-0198,Japan [3]Department of Mathematical and Computer Sciences,Physical Sciences and Earth Sciences,University of Messina,Messina 98166,Italy [4]Department of Electrical Engineering,University of California,Los Angeles CA 90095,USA
出 处:《Science Bulletin》2024年第11期1612-1616,共5页科学通报(英文版)
基 金:supported by the financial support from the National Key Research and Development Program of China (2022YFA1403602);the National Natural Science Foundation of China ( 52161160334,and 12274437);the Science Center of the National Natural Science Foundation of China (52088101);the CAS Project for Young Scientists in Basic Research (YSBR084);supported by the project PRIN 2020LWPKH7 funded by the Italian Ministry of Research and under the Project No. 101070287—SWAN-on-chip—HORIZON-CL4-2021-DIGITALEMERGING-01 funded by the European Union;part supported by KACST;NSF;supported by the RIKEN Special Postdoctoral Researcher (SPDR) program。
摘 要:The importance of topological spin textures(TSTs), such as skyrmions, merons, hopfions, etc., is due to their static and dynamic properties [1]. They carry a topological number that characterizes the homotopy group Π_(n)(S^(2))(n ∈ Z) and classifies maps from S^(n) to S^(2)(e.g., the skyrmion winding number corresponds to Π_(2)(S^(2))).
关 键 词:自旋结构 TOPOLOGICAL HOMOTOPY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7