Concentration breaking on two optimization problems  

在线阅读下载全文

作  者:Yong Huang Qinfeng Li Qiuqi Li 

机构地区:[1]School of Mathematics,Hunan University,Changsha,410082,China

出  处:《Science China Mathematics》2024年第7期1555-1570,共16页中国科学(数学)(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 11625103 and 12171144);Hunan Science and Technology Planning Project (Grant No. 2019RS3016);supported by the National Natural Science Fund for Youth Scholars (Grant No. 12101215);Scientific Research Start-Up Funds by Hunan University;supported by the National Natural Science Fund for Youth Scholars (Grant No. 12101216 );the Natural Science Fund of Hunan Province (Grant No. 2022JJ40030)。

摘  要:In the present paper, we study the boundary concentration-breaking phenomena on two thermal insulation problems considered on Lipschitz domains, based on Serrin's overdetermined result, the perturbation argument, and a comparison of Laplacian eigenvalues with different boundary conditions. Since neither of the functionals in the two problems is C^(1), another key ingredient is to obtain the global H?lder regularity of minimizers of both problems on Lipschitz domains. Also, the exact dependence on the domain of breaking thresholds is given in the first problem, and the breaking values are obtained in the second problem on ball domains, which are related to 2π in dimension 2.

关 键 词:spectral inequalities symmetry breaking Laplacian eigenvalue 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象