检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯颖[1,2] 陈卫东 郑银霞 杨庚林 李月飞 何倩 倪明健[3] FENG Ying;CHEN Weidong;ZHENG Yinxia;YANG Genglin;LI Yuefeil;HE Qian;NI Mingjian(School of Public Health,Xinjiang Medical University,Urumqi 830000,China;Urumqi Maternal and Child Health Hospital,Urumqi 830000,China;Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention,Urumqi 83000,China)
机构地区:[1]新疆医科大学公共卫生学院,乌鲁木齐830000 [2]乌鲁木齐市妇幼保健院,乌鲁木齐830000 [3]新疆维吾尔自治区疾病预防控制中心,乌鲁木齐830000
出 处:《中国心理卫生杂志》2024年第8期680-685,共6页Chinese Mental Health Journal
基 金:新疆维吾尔自治区自然科学基金面上项目(2022D01A30);新疆艾滋病防控研究重点实验室开放课题(XJYS1706-2021002)。
摘 要:目的:运用3种统计模型分析育龄期女性HIV感染者抑郁症状的相关因素并进行比较。方法:选取育龄期女性HIV感染者553人,采用汉密顿抑郁量表(HAMD)评估感抑郁症状,选取logistic回归模型、人工神经网络模型、决策树模型分析抑郁症状的相关因素,采用ROC曲线比较3种模型的预测效果。结果:ROC曲线下面积由大到小依次排序为决策树模型、人工神经网络模型和logistic回归模型(AUC=0.813、0.707、0.701),两两比较显示,人工神经网络模型、logistic回归模型的ROC面积值均小于决策树模型的ROC面积值(均P<0.01)。结论:在预测HIV感染者抑郁症状方面,决策树模型的效果要优于人工神经网络模型和logistic回归模型。Objective:To analyze and compare the related factors of depressive symptoms in HIV-infected women of childbearing age using three statistical models.Methods:Totally 553 HIV-infected women of childbearing age were selected,and depressive symptoms of infected women were evaluated with the Hamilton Depression Scale(HAMD).Logistic regression model,artificial neural network model and decision tree model were selected to analyze the related factors of depressive symptoms of infected women,and ROC curve was used to compare the prediction effects of the three models.Results:The areas under ROC curve were sorted in order from large to small as decision tree model,artificial neural network model and logistic regression model(AUC=0.813,0.707,0.701).The ROC area values of artificial neural network model and logistic regression model were both smaller than those of decision tree model(P<O.O1).Conclusion:Decision tree model is better than artificial neural network model and logistic regression model in predicting depressive symptoms in HIV-infected patients.
分 类 号:R749.41[医药卫生—神经病学与精神病学] R593.32[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.199.33