检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田家怡 彭祥玉 张帅[1] 王宇斌[1] 赵鑫[1] 肖巍 TIAN Jiayi;PENG Xiangyu;ZHANG Shuai;WANG Yubin;ZHAO Xin;XIAO Wei(School of Resources Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
机构地区:[1]西安建筑科技大学资源工程学院,陕西西安710055
出 处:《辽宁工程技术大学学报(自然科学版)》2024年第3期273-278,共6页Journal of Liaoning Technical University (Natural Science)
基 金:国家自然科学基金项目(52004197);中国博士后科学基金项目(2023M732746)。
摘 要:为提高白云母超细磨的效率,采用皮尔森相关系数分析超细磨效率与各参数之间的敏感性,并建立BP神经网络模型对白云母的超细磨正交试验参数进行优化。研究结果表明:各参数对超细磨效率敏感程度由大到小依次为瓷球级配、搅拌速率、助磨剂种类、超细磨时间和助磨剂用量。利用BP神经网络优化后的工艺参数进行超细磨试验,可获得-13μm粒级质量分数为83.04%的白云母,与正交试验最佳点相比提高了2.19%,所建模型可提高白云母超细磨效率,且预测精度较高。研究结论为超细白云母粉体的高效制备提供参考。To improve the efficiency of ultrafine grinding of muscovite,the sensitivity between the ultrafine grinding efficiency and parameters was analyzed by using Pearson's correlation coefficient and the parameters of ultrafine grinding orthogonal test of muscovite was optimized based on a BP neural network model.The reseach results show that the sensitivity of each parameter to the ultrafine grinding efficiency is in the order of ceramic ball gradation,stirring rate,grinding aid type,ultrafine grinding time and grinding aid dosage.The muscovite with a mass fraction of 83.04%at-13μm can be obtained using the process parameters optimized by the BP neural network for the ultrafine grinding test,which is increased by 2.19%compared with optimum conditions of orthogonal test.This model can improve the efficiency of ultrafine grinding of muscovite,and the prediction accuracy is high.The research conclusions provide a reference for the efficient preparation of ultrafine muscovite powder.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49