检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱韫竹 吕欢欢[1] QIAN Yunzhu;LYU Huanhuan(College of Software,Liaoning Technical University,Huludao 125105,China)
机构地区:[1]辽宁工程技术大学软件学院,辽宁葫芦岛125105
出 处:《辽宁工程技术大学学报(自然科学版)》2024年第3期366-372,共7页Journal of Liaoning Technical University (Natural Science)
基 金:辽宁省自然科学基金项目(20180550450)。
摘 要:针对高光谱遥感影像数据中存在较多冗余信息的问题,以染色体的信息量排序为基础,构建联合条件互信息和多元互信息的适应度函数,提高所选特征可以提供的信息量,将适应度函数作为差分进化算法的评价标准,通过最大化适应度函数获得最优特征子集,提出一种新型光谱特征选择算法,使用每条染色体中所选特征的信息量来计算相关性。实验结果表明:在16类地物中该算法在9类上分类准确度最高,说明将基于信息量的相关性的估算作为适应度函数与群体智能优化算法相结合能更好地应用于高光谱遥感影像的光谱特征选择。To solve the problem of redundant information in hyperspectral remote sensing image data,a fitness function of joint conditional mutual information and multivariate mutual information is constructed based on the information ranking of chromosomes to improve the amount of information provided by the selected features.The fitness function is used as the evaluation standard of differential evolution algorithm,and the optimal feature subset is obtained by maximizing the fitness function.A new spectral feature selection algorithm is proposed.The correlation is calculated using the amount of information of the selected feature in each chromosome.The experimental results show that the algorithm achieves the maximum classification accuracy on 9 out of 16 categories of ground objects,indicating that the estimation based on the correlation of information content as the fitness function combined with the swarm intelligence optimization algorithm can be better applied to the spectral feature selection of hyperspectral remote sensing images.
关 键 词:高光谱 差分进化算法 多元互信息 特征选择 适应度函数
分 类 号:TP751.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117