基于VGG网络的少样本图像分类方法研究  

在线阅读下载全文

作  者:王国明[1] 李苗苗 

机构地区:[1]安徽理工大学计算机科学与工程学院,安徽淮南232001

出  处:《电脑知识与技术》2024年第17期6-10,共5页Computer Knowledge and Technology

基  金:安徽理工大学国家级大学生创新训练项目(2020103661092);安徽理工大学(HX2022082726)。

摘  要:图像分类是计算机视觉领域的热门研究之一。然而,深度神经网络在面对少样本学习时,可能因数据量不足导致过拟合等问题。为此,提出了一种基于VGG网络模型的多层次滤波器方法(IVGG)。首先,在VGG网络中引入滤波器组,通过采用1×1、3×3和5×5多层次滤波器组,从多个角度获取图像的形状和纹理等特征信息,从而避免单一滤波器的不足。然后,在卷积层之后引入批归一化处理,可缓解梯度消失、增加模型鲁棒性和学习速率。通过在四种数据集上的对比实验,结果表明,IVGG与DN4、MACO和CovaMNet方法相比,对少样本图像的分类准确率提高了0.82%~1.87%,并且损失值降低了0.02~0.18。证明该方法在处理少样本图像分类中具有更高的准确率与更低的损失值,同时能一定程度上减小网络模型的复杂度。

关 键 词:VGG网络 图像分类 少样本学习 滤波器组 批归一化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象