检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王琦[1,2,3] 米佳帅 Wang Qi;Mi Jiashuai(College of Information Science and Engineering,Northeastern University,Shenyang 110819,Liaoning,China;State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,Liaoning,China;Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology,Qinhuangdao 066004,Hebei,China)
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819 [2]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819 [3]河北省微纳精密光学传感与检测技术重点实验室,河北秦皇岛066004
出 处:《激光与光电子学进展》2024年第10期59-73,共15页Laser & Optoelectronics Progress
基 金:国家自然科学基金(62073068);中央高校基本科研业务费专项资金(N2204019);河北省自然科学基金(F2020501040);山东省自然科学基金(ZR2020MF108,ZR2020MD058);沈阳市科技计划项目(23-407-3-01);辽宁省应用基础研究计划项目(2023JH2/101300179);流程工业综合自动化国家重点实验室研究基金(2018ZCX29)。
摘 要:单像素成像通过调制光场测量场景对单个像素探测器的强度响应来还原场景图像,相比依赖阵列探测器捕捉图像信息的传统成像技术,在低成本、宽光谱及特定应用场景下具有出色表现。该技术是一种由物理域转为计算域的新型成像方式,因此众多研究在寻找高效的计算方式。由于神经网络在计算域中的强大学习能力,深度学习技术已经广泛应用于单像素成像中并取得了显著进展。将深度学习单像素成像分为数据驱动式、物理驱动式及混合驱动式,又在每个驱动模式下划分出神经网络用于“图像到图像”和神经网络用于“测量值到图像”两种成像方法。从6种角度综述基于深度学习的单像素成像方法的基本理论和典型案例,并讨论了各类方法的优势与不足。最后对基于深度学习的单像素成像方法进行总结与展望,有前景的应用包括高光谱成像、瞬态观测与目标检测。Single-pixel imaging reproduces scene images by modulating the light field to measure the intensity response of the scene with a single-pixel detector.Compared with traditional imaging techniques that rely on arrays of detectors to capture image information,single-pixel imaging excels in low-cost,broad-spectrum,and application-specific scenes.This technique is a novel imaging approach that shifts from the physical to the computational domain;hence,many studies are exploring efficient computational approaches.Owing to the powerful learning capability of neural networks in the computational domain,deep learning techniques have been extensively employed in single-pixel imaging and have made remarkable progress.In this paper,deep learning single-pixel imaging is categorized into three modes:data-driven,physical-driven,and hybrid-driven modes.Within each mode,neural networks are further categorized as“image-to-image”and"measurements-to-image"imaging methods.The basic theories and typical cases of single-pixel imaging methods based on deep learning are reviewed from six perspectives,and the advantages and shortcomings of each method are discussed.Finally,single-pixel imaging methods based on deep learning are summarized and discussed,and promising applications include hyperspectral imaging,transient observation,and target detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.194.130