检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹溪洋 周佩 朱江平 Yin Xiyang;Zhou Pei;Zhu Jiangping(College of Computer Science,Sichuan University,Chengdu 610065,Sichuan,China;National Key Laboratory of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065,Sichuan,China)
机构地区:[1]四川大学计算机学院,四川成都6100652.四川大学计算机学院,四川成都610065 [2]四川大学视觉合成图形图像技术重点学科实验室,四川成都610065
出 处:《激光与光电子学进展》2024年第10期265-272,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金(62101364,61901287);四川省中央引导地方科技发展计划(22ZYD0111);中国博士后科学基金(2021M692260);四川省重大科技专项(2021YFG0195,2022YFG0053)
摘 要:点云补全指利用不完整点云数据重建完整三维模型的过程。现有的大多数点云补全方法受点云无序性和不规则性影响,难以有效地重建局部细节信息,进而影响补全精度。为解决这个问题,提出基于注意力的多阶段点云补全网络。设计了满足置换不变性的金字塔式点云特征提取器以建立局部内点间的依赖以及不同局部间的相关性,在提取全局特征信息的同时加强对局部特征信息的提取。在点云重建过程中,采用由粗到精的方式,首先生成一个低分辨率的种子点云,然后逐步丰富种子点云的局部细节,得到更加精细且稠密的点云。在公开数据集PCN下进行的对比实验结果证明了所提网络能够有效重建局部细节信息,与现有方法相比,在补全精度上提升了至少5.98%。消融实验结果也进一步验证了所提注意力模块的有效性。Point cloud completion refers to the process for reconstructing a complete 3D model using incomplete point cloud data.Most of the existing point cloud completion methods are limited by the point cloud disorder and irregularity,which makes it difficult to reconstruct the local detail information,thus affecting the completion accuracy.To solve this problem,an attention-based multi-stage network for point cloud completion is proposed.A pyramid feature extractor that satisfies the replacement invariance is designed to establish the dependence between points within a localization as well as the correlation between different localizations,so as to enhance the extraction of local information while extracting global feature information.In the point cloud reconstruction process,a coarse-to-fine completion method is adopted to first generate a low-resolution seed point cloud,and then gradually enrich the local details of the seed point cloud to obtain a finer and denser point cloud.Comparison results of the experiments conducted on the public dataset PCN demonstrate that the proposed network can effectively reconstruct the local detail information,and improves the co mpletion accuracy by at least 5.98%over the existing methods.The ablation experimental results also further validate the effectiveness of the designed attention module.
关 键 词:点云 点云补全 自注意力 交叉注意力 几何细节感知
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222