基于改进YOLOv8算法的遥感图像目标检测  被引量:8

Remote-Sensing Image Object Detection Based on Improved YOLOv8 Algorithm

在线阅读下载全文

作  者:张秀再[1,2] 沈涛 许岱 Zhang Xiuzai;Shen Tao;Xu Dai(School of Electronic and Information Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,Jiangsu,China;Jiangsu Province Atmospheric Environment and Equipment Technology Collaborative Innovation Center,Nanjing University of Information Science&Technology,Nanjing 210044,Jiangsu,China)

机构地区:[1]南京信息工程大学电子与信息工程学院,江苏南京210044 [2]南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京210044

出  处:《激光与光电子学进展》2024年第10期290-300,共11页Laser & Optoelectronics Progress

基  金:国家社会科学基金一般项目(22BZZ080)。

摘  要:针对遥感图像目标检测算法漏检和误检率高、目标定位不精确、无法准确识别目标类别等问题,提出一种基于改进YOLOv8的目标检测算法。为提高模型的损失函数对梯度分配的灵活性,适应各种形状和尺寸的物体,设计了非单调聚焦机制与边界框几何因素相结合的边界框回归损失函数;为扩大模型的感受野并削弱遥感图像背景对检测目标的影响,采用全局注意力机制与残差块结合的方式,设计了残差全局注意力机制;为使模型适应遥感图像中目标物体的形变与不规则排列,对YOLOv8模型中的C2f模块进行改进,融入可变形卷积与可变形感兴趣区域池化层。实验结果表明,在DOTA数据集和RSOD数据集上,所提算法的平均精度均值(mAP@0.5)达到72.1%和94.6%,优于对比算法,提高了遥感图像目标检测精度,为遥感图像识别提供了新的手段。A target detection algorithm based on improved YOLOv8 is proposed to address the issues of high-missed and false-detection rates,inaccurate target positioning,and inability to accurately identify target categories in remote-sensing image target detection algorithms.To improve the flexibility of the loss function of the model in gradient allocation and adapt to various object shapes and sizes,a boundary box regression loss function is designed,which combines a nonmonotonic focusing mechanism with geometric factors of the boundary box.To expand the receptive field of the model and weaken the influence of the remote-sensing image background on the detection target,a residual global attention mechanism is designed by combining global attention mechanism and residual blocks.To adapt the model to the deformation and irregular arrangement of target objects in remote-sensing images,the C2f module in the YOLOv8 model is improved by incorporating deformable convolution and deformable region-of-interest pooling layers.Experimental results show that on DOTA and RSOD datasets,mean average precision(mAP@O.5)of the improved YOLOv8 algorithm reaches 72.1%and 94.6%,which are better than other mainstream algorithms.It improves the accuracy of remote sensing image target detection and provides a new means for remote sensing image target detection.

关 键 词:目标检测 YOLOv8 WIoU 全局注意力机制 可变形卷积 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象