基于CycleGan的动车零件图像高光消除方法  

A Highlight Elimination Method for Train Parts Image Based on CycleGan

在线阅读下载全文

作  者:沈钧贤 梅劲松[1] 王干 陈苏扬 SHEN Junxian;MEI Jinsong;WANG Gan;CHEN Suyang(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Nanjing Tuokong Information Technology Co.,Ltd.,Nanjing 210004,China;Nanjing Metro Operation Co.,Ltd.,Nanjing 210000,China)

机构地区:[1]南京航空航天大学自动化学院,江苏南京211106 [2]南京拓控信息科技股份有限公司,江苏南京210004 [3]南京地铁运营有限责任公司,江苏南京210000

出  处:《机械与电子》2024年第7期10-15,共6页Machinery & Electronics

摘  要:应用光学无接触方法检测动车零件损伤时,采集图像的照射光易在零件上造成镜面反射,使得采集图像上存在高光,不利于对损伤部位的辨识。提出一种基于循环对抗生成网络(CycleGan)和光照补偿算法结合的方法来修复动车轮部图像的高光部分。首先通过生成手段初步修复高光区域,然后改进Retinex光照补偿算法,实现对生成图像的进一步增强,达到高光消除的目的。实验结果表明,所提方法大幅改善了高光区域的像素灰度,使得该部分像素灰度接近图像整体像素灰度,同时强化了暗部细节和图像信息,提高了损伤部分的辨识度。When using optical non-contact methods to detect damage to motor vehicle parts,the illumination light of the collected images can easily cause specular reflection on the parts,resulting in high light on the collected images,which is not conducive to the identification of damaged parts.This paper proposes a method based on a combination of CycleGan and illumination compensation algorithm(Retinex)to repair the highlight part of the moving wheel image.First,the highlight area is initially repaired through generation means,then the Retinex illumination compensation algorithm is improved to further enhance the generated image.Experimental results show that the method used greatly improves the pixel grayscale of the highlight area,making the pixel grayscale of this part close to the overall pixel grayscale of the image,which achieve the goal of highlight removal.Meanwhile,it strengthens the details and image information of the dark parts,and improves the recognition of the damaged parts.

关 键 词:高光消除 图像处理 光照补偿 循环对抗生成网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U266[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象