检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨真真[1] 邵静 杨永鹏[1,2] 吴心怡 YANG Zhenzhen;SHAO Jing;YANG Yongpeng;WU Xinyi(Key Laboratory of Ministry of Education in Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Network and Communication,Nanjing Vocational College of Information Technology,Nanjing 210023,China)
机构地区:[1]南京邮电大学宽带无线通信与传感网技术教育部重点实验室,江苏南京210003 [2]南京信息职业技术学院网络与通信学院,江苏南京210023
出 处:《南京邮电大学学报(自然科学版)》2024年第3期63-71,共9页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基 金:国家自然科学基金(62071242,62171232);江苏省研究生科研与实践创新计划项目(KYCX22_0955,SJCX23_0251);南京邮电大学科研项目(NY220207)资助项目。
摘 要:具有混合记忆的自步对比学习(Self-paced Contrastive Learning,SpCL)通过集群聚类生成不同级别的伪标签来训练网络,取得了较好的识别效果,然而该方法从源域和目标域中捕获的行人数据之间存在典型的分布差异,使得训练出的网络不能准确区别目标域和源域数据域特征。针对此问题,提出了双分支动态辅助对比学习(Dynamic Auxiliary Contrastive Learning,DACL)框架。该方法首先通过动态减小源域和目标域之间的局部最大平均差异(Local Maximum Mean Discrepancy,LMMD),以有效地学习目标域的域不变特征;其次,引入广义均值(Generalized Mean,GeM)池化策略,在特征提取后再进行特征聚合,使提出的网络能够自适应地聚合图像的重要特征;最后,在3个经典行人重识别数据集上进行了仿真实验,提出的DACL与性能次之的无监督域自适应行人重识别方法相比,mAP和rank-1在Market1501数据集上分别增加了6.0个百分点和2.2个百分点,在MSMT17数据集上分别增加了2.8个百分点和3.6个百分点,在Duke数据集上分别增加了1.7个百分点和2.1个百分点。The self-paced contrastive learning(SpCL)with hybrid memory uses clustering to train the network to generate different levels of pseudo labels,and achieves good re-identification results.However,as a distribution difference exists between the pedestrian datasets captured from the source domain and the target domain,the trained network cannot accurately identify the features of the target domain and the source domain.To solve this problem,this paper proposes a two-branch dynamic auxiliary contrastive learning(DACL)framework.This framework effectively learns the domain invariant features of the target domain by dynamically reducing the local maximum mean discrepancy(LMMD)between the source domain and the target domain.In addition,the generalized mean(GeM)pooling strategy is adopted to aggregate features after feature extraction,so that the proposed network can adaptively aggregate the important features in the image space.Finally,simulation experiments are conducted on three classic person re-identification datasets.Compared with the unsupervised domain adaptation for person re-identification methods with the second best performance,the proposed DACL increases mAP and rank-1 by 6.0 percentages and 2.2 percentages on the Market1501 dataset,2.8 percentages and 3.6 percentages on the MSMT17 dataset,and 1.7 percentages and 2.1 percentages on the Duke dataset,respectively.
关 键 词:行人重识别 无监督域自适应 广义均值池化 局部最大平均差异 对比学习
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.204