检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯心怡 刘亦婷 肖智雄 俞艳[1] 张宸赫 程雨森 FENG Xinyi;LIU Yiting;XIAO Zhixiong;YU Yan;ZHANG Chenhe;CHENG Yusen(School of Resource and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学资源与环境工程学院,湖北武汉430070
出 处:《地理空间信息》2024年第7期36-40,67,共6页Geospatial Information
基 金:大学生创新创业训练计划资助项目(S202210497328)。
摘 要:利用手机信令数据、高德实时交通态势数据、POI数据等多源大数据,以宁波市拥堵核心区域为研究单元,对比了普通最小二乘法回归模型、经典地理加权回归模型、多尺度地理加权回归(MGWR)模型的精度;并选用最优模型定量探究了宁波市拥堵核心区不同时段的交通拥堵驱动力。结果表明:①MGWR模型对交通拥堵驱动力的拟合效果较好,且能反映不同驱动力间的空间异质性;②实时人口密度、路网密度、土地利用混合度、职住平衡指数对交通拥堵影响存在时空分异,公司分布密度对交通拥堵影响存在圈层性。研究结果可为大数据在交通拥堵领域的应用提供一定参考,为管理者分析交通拥堵根源提供依据。By using multi-source big data such as mobile phone signaling data,real-time traffic data of Amap and POI data,taking the congestion core area in Ningbo as the research unit,we compared the accuracy of ordinary least squares regression model,classical geo-weighted regression model and multi-scale geo-weighted regression(MGWR)model,and selected the optimal model to quantitatively explore the traffic congestion driving force of different time periods in Ningbo’s congestion core area.The results show that①the MGWR model fits the traffic congestion driving force better and can reflect the spatial heterogeneity among different drivers.②There are spatio-temporal differences in the effects of real-time population density,road network density,land-use mix and job-occupancy balance index on traffic congestion.There are circles in the effects of company distribution density on traffic congestion.This study can provide some references for the future application of big data in the traffic congestion field,and a basis for managers to analyze the root causes of traffic congestion.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.252.197