检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎文皓 季彦婕[1] 吴浩 贾叶雯 张水潮 LI Wenhao;JI Yanjie;WU Hao;JIA Yewen;ZHANG Shuichao(School of Transportation,Southeast University,Nanjing 211189,China;Department of Civil and Environmental Engineering,Nagoya University,Nagoya 464-8603,Japan;Key Laboratory of Traffic Information and Safety,Anhui Sanlian University,Hefei 230601,China;School of Civil and Transportation Engineering,Ningbo University of Technology,Ningbo 315211,China)
机构地区:[1]东南大学交通学院,江苏南京211189 [2]名古屋大学土木与环境工程系,爱知县名古屋464-8603 [3]安徽三联学院交通信息与安全重点实验室,安徽合肥230601 [4]宁波工程学院建筑与交通工程学院,浙江宁波315211
出 处:《浙江大学学报(工学版)》2024年第8期1659-1670,共12页Journal of Zhejiang University:Engineering Science
基 金:中央高校基本科研业务费专项资金资助项目(2242020K40063);江苏省研究生科研与实践创新计划资助项目(KYCX20_0137);浙江省自然科学基金资助项目(LTGG23E080005).
摘 要:为了制订自动驾驶车辆(AV)停车需求管理方案,搭建多智能体停车模拟框架,提出2种空载行驶收费策略:基于行驶距离的静态收费和基于道路拥堵水平的动态收费,研究费率计算方法.建立空载行驶收费策略下停车场停车、居住地停车及持续空载巡航3种停车模式的成本函数,使用logit模型描述不同停车模式下的选择行为.利用Simulation of urban mobility(SUMO),以南宁市主城区为例开展大规模路网下的仿真实验,研究2种策略下的AV停车行为及路网运行状态变化.仿真结果表明,静态收费策略和动态收费策略下的AV空载行驶里程分别减少了20.16%和10.85%,车辆总延误分别降低了39.80%和43.52%;动态收费策略能够灵活地根据路况变化进行实时调整,路网运行效率提升更显著.A multi-agent parking simulation framework was constructed in order to formulate autonomous vehicle(AV)parking demand management strategies.Two charging strategies for empty-load driving were proposed:a static charge based on driving distance and a dynamic charge based on road congestion levels.Rate calculation method was analyzed.Cost functions for parking lots,residential parking,and continuous empty cruising were established under these charging policies.A logit model was used to describe the choice behavior under different parking modes.The simulation of urban mobility(SUMO)was used to conduct a large-scale road network simulation experiment in Nanning’s main urban area.AV parking behavior and road network operation under both strategies were analyzed.The simulation results showed that the empty-load driving mileage of AVs decreased by 20.16%and 10.85%under the static and dynamic charging strategies,respectively.Total vehicle delay decreased by 39.80%and 43.52%,respectively.The dynamic charging strategy was adjustable in real-time based on road conditions,and operational efficiency of the road network was significantly enhanced.
关 键 词:停车空载收费 自动驾驶汽车 多智能体模拟 SUMO
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.9.230