地铁车站客流预测方法比较研究  

Comparative Study of the Passenger Flow Prediction Method for Metro Stations

在线阅读下载全文

作  者:余伟之 夏三县 篮杰[1] 刘军 勾宇鹏 何大四[3] 王亚勇 白晓燕 YU Weizhi;XIA Sanxian;LAN Jie;LIU Jun;GOU Yupeng;HE Dasi;WANG Yayong;BAI Xiaoyan(China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 460063,China;Zhengzhou Metro Group Co.,Ltd.,Zhengzhou 450001,China;Zhongyuan University of Technology,Zhengzhou 450001,China)

机构地区:[1]中铁第四勘察设计院集团有限公司,湖北武汉460063 [2]郑州地铁集团有限公司,河南郑州450001 [3]中原工学院,河南郑州450001

出  处:《智慧轨道交通》2024年第4期98-103,共6页SMART RAIL TRANSIT

摘  要:为了更加合理地进行地铁车辆调度和制定人员配置方案,并在满足人们出行需求的基础上实现资源利用最大化,对地铁客流量进行准确地短时预测是非常必要的,同时客流预测对地铁站厅空调系统的运行调节也具有重要作用。文章通过对郑州某地铁车站2014年6—7月的进站小时客流量数据进行统计分析,构建季节性差分自回归滑动平均(SARIMA)模型、非线性自回归神经网络(NAR)模型和长短期记忆网络(LSTM)模型,用统计数据进行模型训练并实施预测。通过在工作日客流预测中,发现LSTM模型在MAE、RMSE和R2上均优于其他模型,拟合系数R2达到0.9814,MAE为55.84,均方根误差为88.56;在非工作日客流预测中,LSTM模型同样表现出最好的效果,R2达到0.9817;SARIMA模型精度接近LSTM模型。这说明在对具有明显周期性数据预测时,无论是经典的时间序列方法还是先进的深度学习方法预测结果都很好,传统的神经网络因为无法捕捉周期性所以预测效果较差,预测精度相对较低。In order to dispatch the metro vehicles and establish the staffing scheme more reasonably,and maximize the use of resources on the basis of satisfying the people’s travel needs,it’s very necessary to make accurate short-term predictions of the metro passenger flow,meanwhile,the passenger flow prediction is also important for adjusting the operation of the air conditioning system in the metro station hall.This article conducts a statistical analysis of the passenger flow data entered per hour during June and July of 2014 at a metro station in Zhengzhou,constructs a seasonal autoregressive integrated moving average(SARIMA)model,a non-linear autoregressive(NAR)neural network model,and a long and short-term memory network(LSTM)model,trains the models with statistical data,and generates predictions.From the passenger flow predictions of working days,it turns out that the LSTM model is better than the other models in MAE,RMSE and R2,with the fit coefficients R2=0.9814,MAE=55.84 and RMSE=88.56.In the passenger flow prediction of non-working days,the LSTM model also gives the best effect,with R2=0.9817;and the accuracy of the SARIMA model is close to that of the LSTM model.It shows that in the prediction of data with obvious periodicity,the prediction result is good both with the classical time series method and with the advanced deep learning approach,while the conventional neural network has a worse effect of prediction and a lower accuracy of prediction because it is incapable of catching the periodicity.

关 键 词:地铁车站 客流 SARIMA模型 NAR神经网络 长短期记忆网络模型 短时预测 

分 类 号:U293.13[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象