面向轻量化的改进YOLOv7棉杂检测算法  被引量:1

Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7

在线阅读下载全文

作  者:张勇进 徐健[1] 张明星 ZHANG Yongjin;XU Jian;ZHANG Mingxing(School of Electronics and Information,Xi’an Polytechnic University,Xi’an Shaanxi 710048,China)

机构地区:[1]西安工程大学电子信息学院,西安710048

出  处:《计算机应用》2024年第7期2271-2278,共8页journal of Computer Applications

基  金:陕西省科技厅项目(2018GY-173);西安市科技局项目(GXYD7.5)。

摘  要:针对棉纺厂原棉吞吐量大、检测时间长而常见卷积神经网络无法实现高实时检测的问题,提出基于轻量化改进的YOLOv7模型对原棉杂质的检测算法,旨在快速高效地对棉杂质进行检测。首先通过删减YOLOv7模型冗余的卷积层从而提高检测速度;其次在主干网络内添加FasterNet卷积降低模型的计算负担,减少特征图的冗余性,实现高实时检测;最后在颈部网络内运用CSP-RepFPN(Cross Stage Partial networks with Replicated Feature Pyramid Network)重构特征金字塔,增加特征信息流通,减少特征损失,提高检测精度。实验结果表明:在自建棉杂数据集上改进的YOLOv7模型在棉杂检测精度上达到了96.0%,检测时间比YOLOv7减少了37.5%;在公开DWC(Drinking Waste Classification)数据集上整体精度达到82.5%,检测时间仅为29.8 ms。改进的YOLOv7模型能够为原棉杂质的实时检测和识别分类提供一种轻量化的检测方法,大幅节约了时间成本。Addressing the challenges posed by high throughput of raw cotton and long impurity inspection duration in cotton mills,an improved YOLOv7 model incorporating lightweight modifications was proposed for impurity detection in raw cotton.Initially,redundant convolutional layers within YOLOv7 model were pruned,thereby increasing detection speed.Following this,FasterNet convolutional layer was integrated into the primary network to mitigate model computational load,diminish redundancy in feature maps,and consequently realized real-time detection.Ultimately,CSP-RepFPN(Cross Stage Partial networks with Replicated Feature Pyramid Network)was used within neck network to facilitate the reconstruction of feature pyramid,augment flow of feature information,minimize feature loss,and elevate the detection precision.Experimental results show that,the improved YOLOv7 model achieves a detection mean Average Precison of 96.0%,coupled with a 37.5%reduction in detection time on self-made raw cotton impurity dataset;and achieves a detection accuracy of 82.5%with a detection time of only 29.8 ms on publicly DWC(Drinking Waste Classification)dataset.This improved YOLOv7 model provides a lightweight approach for real-time detection,recognition and classification of impurities in raw cotton,yielding substantial time savings.

关 键 词:棉杂检测 YOLOv7 CSP-RepFPN 轻量化 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象