检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康俊涛[1] 韦朝校 KANG Jun-tao;WEI Chao-xiao(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学土木工程与建筑学院,武汉430070
出 处:《武汉理工大学学报》2024年第6期54-60,共7页Journal of Wuhan University of Technology
摘 要:为了提高对接接头固有应变的获取效率,进行了41组对接接头数值模拟实验,获取了实验的固有应变值,并基于实验数据,利用机器学习方法可以高效处理数据的优点,采用支持向量机回归(SVR)算法对对接接头的横向和纵向固有应变值进行了预测。采用均方根误差(RMSE),平均绝对百分比误差(MAPE)和决定系数(R^(2))对预测模型进行了评估。结果表明,预测模型的均方根误差和平均绝对百分比误差都很小,决定系数都接近于1,预测的结果很精准。In order to improve the efficiency of obtaining the inherent strains of butt joints,41 sets of numerical simula-tion experiments of butt joints were carried out to obtain the experimental inherent strain values,and based on the experi-mental data,the transverse and longitudinal inherent strain values of butt joints were predicted by the support vector ma-chine regression(SVR)algorithm using the advantages of machine learning methods that can process the data efficiently.Moreover,the root mean square error(RMSE),mean absolute percentage error(MAPE)and coefficient of determination(R^(2))were used to evaluate the prediction model.The results show that the root mean square error(RMSE)and the mean absolute percentage error(MAPE)of the prediction model are small,and the coefficient of determination(R^(2))is close to 1.The predictions are accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.171.15