检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴迪[1] 马超 段晓旋 WU Di;MA Chao;DUAN Xiao-xuan(School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,China;Xingtai Municipal Committee of the CPC,Xingtai Municipal Party Committee Office of the CPC,Xingtai 054001,China)
机构地区:[1]河北工程大学信息与电气工程学院,河北邯郸056038 [2]中共邢台市委中共邢台市委办公室,河北邢台054001
出 处:《计算机工程与设计》2024年第7期2097-2103,共7页Computer Engineering and Design
基 金:国网电网有限公司科技指南基金项目(5600-202019167A-0-0-00);河北省自然科学基金项目(F2020402003)。
摘 要:针对传统抽取式阅读理解模型未充分考虑问答样本之间潜在相关性的问题,通过RoBERTa对问题与段落进行编码,利用外部注意力Exatt增强语义交互层特征获取能力,提出外部注意力增强语义交互的阅读理解模型,捕获问题与段落中蕴涵的语义特征和不同问答样本之间的潜在相关性。实验结果表明,在CMRC2018和构建的电力安规问答数据集上,在评价指标EM和F1两方面,该方法较基线模型分别最高提高了0.737%和2.556%。Aiming at the problem that the traditional extractive reading comprehension model does not fully consider the potential correlation between Q&A samples,the RoBERTa was used to encode the questions and paragraphs.The external attention Exatt was used to enhance the feature acquisition ability of the semantic interaction layer.The reading comprehension model based on external attention enhances semantic interaction was proposed.The semantic features in the questions and paragraphs,the potential correlation between different Q&A samples were obtained.Experimental results show that Roberta-Exatt model can improve the evaluation indexes of EM and F1 by 0.737%and 2.556%on the constructed power safety Q&A dataset,respectively,compared with the baseline model.
关 键 词:电力安规 抽取式机器阅读理解 预训练模型 问答样本 潜在相关性 外部注意力 语义交互
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.204.192