检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘博宇 张剑[1] PAN Boyu;ZHANG Jian(School of Informationand Electrical Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411100,China)
机构地区:[1]湖南科技大学信息与电气工程学院,湖南湘潭411100
出 处:《计算机应用文摘》2024年第14期86-88,共3页Chinese Journal of Computer Application
摘 要:针对VSLAM算法在室内动态场景下精度低、鲁棒性差的问题,结合深度学习和多视图几何的方法,首先利用语义分割网络对RGB-D视频流图像进行处理,建立动态对象的先验语义信息,然后针对无先验信息的移动物体进行多视图几何处理,最后使用静态特征点进行特征匹配和位姿估计。在慕尼黑工业大学开源的TUM公开数据下进行实验验证,结果显示,在室内动态环境下,该系统相较于ORB-SLAM2和ORB-SLAM3能够更接近真实轨迹,且轨迹的绝对位姿误差显著降低;在高动态环境下,相较于ORB系列算法,平均提升了79.1625%;在低动态环境下,平均提升了12.4125%。In response to the low accuracy and poor robustness of the VSLAM algorithm in indoor dynamic scenes,a combination of deep learning and multi view geometry methods is used.Firstly,a semantic segmentation network is used to process RGB-D video stream images,establish prior semantic information of dynamic objects,then perform multi view geometric processing on moving objects without prior information,and finally use static feature points for feature matching and pose estimation.Experimental verification was conducted on TUM open source data at the Technical University of Munich,and the results showed that in indoor dynamic environments,the system was closer to the real trajectory compared to ORB-SLAM2 and ORB-SLAM3,and the absolute pose error of the trajectory was significantly reduced.In high dynamic environments,compared to the ORB series algorithms,the average improvement is 79.162%.In low dynamic environments,an average improvement of 12.4125%was achieved.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49