检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴子洋 刘旋 章永龙[1] 朱俊武[1] WU Ziyang;LIU Xuan;ZHANG Yonglong;ZHU Junwu(School of Information Engineering(School of Artificial Intelligence),Yangzhou University,Yangzhou 225127,China;School of Computer Science and Engineering,Southeast University,Nanjing 211189,China)
机构地区:[1]扬州大学信息工程学院(人工智能学院),江苏扬州225127 [2]东南大学计算机科学与工程学院,南京211189
出 处:《扬州大学学报(自然科学版)》2024年第3期46-52,共7页Journal of Yangzhou University:Natural Science Edition
基 金:江苏省“双创博士”基金资助项目(JSSCBS20211035);江苏省博士后基金资助项目(2021K402C)。
摘 要:针对传统粒子群算法存在求解精度低和易陷入局部最优等问题,提出一种基于巴特沃斯幅频特性的自适应粒子群算法(Butterworth amplitude-frequency characteristics based adaptive particle swarm optimization algorithm,BAC-PSO).一方面,借助巴特沃斯幅频特性设计一种惯性权重非线性递减策略,均衡算法中粒子的局部与全局搜索能力;另一方面,通过S型函数的粒子群优化策略和Sigmoid函数改进位置更新方法,进一步提升算法的求解精度.以5个经典的测试函数为基准,将BAC-PSO算法与5种经典粒子群算法的性能进行对比,并将其应用到求解压力容器模型的设计问题中.实验结果表明,相较于其他经典粒子群算法,BAC-PSO算法的求解精度更高,收敛速度更快,稳定性更好.The traditional particle swarm optimization algorithm has problems such as low accuracy and easy to fall into local optimality.An Butterworth amplitude-frequency characteristics based adaptiveparticle swarm optimization(BAC-PSO)is proposed.On the one hand,based on Butterworth amplitude-frequency characteristic,a nonlinear decline strategy of inertia weight is designed to balance the local and global search ability of particles in the algorithm.On the other hand,the position update method is improved by the particle swarm optimization strategy of S-shaped function and the Sigmoid function to further improve the solution accuracy of the algorithm.Based on five classical test functions,the performance of BAC-PSO algorithm is compared with that of five classical particle swarm optimization algorithms,and it is applied to solve the design problem of pressure vessel model.The experimental results show that compared with other classical particle swarm optimizationalgorithms,BAC-PSO algorithm has higher solution accuracy,faster convergence speed and better stability in most cases.
关 键 词:粒子群算法 巴特沃斯幅频特性 自适应 惯性权重 压力容器模型
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.168.130