检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕富成 酒名扬 韩立钦 陈晓虹 LÜFucheng;JIU Mingyang;HAN Liqin;CHEN Xiaohong(College of Tourism,Henan Normal University,Xinxiang,Henan Province 453007;Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province,Xinxiang,Henan Province 453007;College of Life Sciences,Henan Normal University,Xinxiang,Henan Province 453007)
机构地区:[1]河南师范大学旅游学院,河南新乡453007 [2]河南省太行山森林生态系统野外科学观测研究站,河南新乡453007 [3]河南师范大学生命科学学院,河南新乡453007
出 处:《气候与环境研究》2024年第3期243-252,共10页Climatic and Environmental Research
基 金:国家重点研发计划项目2022YFF0711704;河南师范大学博士科研启动基金5101209171332;河南师范大学博士后科研启动基金5101049470281。
摘 要:基于北方针叶林典型站点——呼中定位观测站2014~2018年不同时间尺度碳通量观测数据,探究了该生态系统长时间序列碳通量动态变化及其影响因素。结果表明:受总初级生产力(Gross Primary Productivity,GPP)和生态系统呼吸(Ecosystem Respiration,RE)的综合作用影响,北方针叶林生态系统净碳交换量(Net Ecosystem Exchange,NEE)年际变化差异较大,在2.64~17.63 g(C)m^(-2) a^(-1)之间波动;从季节上看,在生长季(6~8月)GPP值大于RE,北方针叶林以净碳吸收为主,在非生长季,NEE与RE相等,北方针叶林为弱碳源;逐日尺度上,NEE呈倒“U”形变化特征,RE和GPP则呈“U”形特征。日尺度NEE主要受净辐射、相对湿度、气温、土壤温度等因素影响,这些环境因素构建的回归方程可以解释45.19%的NEE日变化;月尺度上NEE主要受净辐射、相对湿度、气温3个因素影响,回归方程可以解释78.42%的NEE月变化。The long-term temporal dynamics of carbon fluxes and their influencing factors in this ecosystem investigated by utilizing observational data collected from the Huzhong Positioning Observatory,located at a typical site in boreal coniferous forests in China from 2014 to 2018.The results indicate that the Net Ecosystem Exchange(NEE)in boreal coniferous forests exhibits significant interannual variability,ranging between 2.64 g(C)m-2 a^(-1) and 17.63 g(C)m-2 a^(-1).This variability is attributed to the interplay of Gross Primary Productivity(GPP)and Ecosystem Respiration(RE).The results also reveal that during the growing season(June–August),GPP exceeds RE,leading to net carbon absorption in the forests. Meanwhile, during the nongrowing season, NEE equals RE, positioning boreal coniferous forests as weak carbon sources. At the daily scale, the trend of NEE variation exhibits an inverted “U” shape, while those of RE and GPP show a “U” shape. The study identifies key factors such as Net Radiation (RN), Relative Humidity (RH), Air Temperature (TA), and Soil Temperature (TS) as primary influencers of daily NEE variations. A regression equation incorporating these environmental factors accounts for 45.19% of the daily NEE variations. At the monthly scale, NEE is primarily influenced by RN, RH, and TA. A regression equation incorporating these environmental factors accounts for 78.42% of the monthly NEE variations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51