检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈亚博 于丽霞[1] 刘吉[1,2] 武锦辉[2] 安海琳 Chen Yabo;Yu Lixia;Liu Ji;Wu Jinhui;An Hailin(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;Key Laboratory of Electronic Testing Technology,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学信息与通信工程学院,太原030051 [2]中北大学电子测试技术重点实验室,太原030051
出 处:《国外电子测量技术》2024年第7期122-128,共7页Foreign Electronic Measurement Technology
基 金:山西省基础研究计划(202103021224188,202203021221101);中北大学重点实验室开放项目(DXMBJJ2022-02)资助。
摘 要:针对静爆场中所拍摄图片存在破片目标小、背景复杂的问题,提出一种基于改进袋獾算法的破片图像多阈值分割。基于Tent混沌映射初始化种群,加入自适应权重策略以提高算法全局搜索能力,结合精英反向学习策略来避免算法过早陷入局部最优。基于优化袋獾算法求解Tsallis相对熵的最小值,作为目标函数值计算最佳阈值对破片图像进行目标分割。仿真结果表明,ITDO在12类基准函数上相较于其他算法表现出更强的收敛性和稳定性。ITDO-Tsallis算法与其他两种先进算法相比,收敛时间更快、求解目标更精准,说明该算法能有效解决静爆场破片图像目标分割问题。To tackle the challenge of segmenting small debris targets against complex backgrounds in static explosion imagery,we've refined a multi-threshold segmentation technique using a tasmanian devil algorithm.This method leverages Tent chaos mapping for population initialization and an adaptive weight strategy to bolster global search efficiency.It also integrates an elite reverse learning strategy to evade local optima traps.Using ITDO to solve for the minimum value of Tsallis relative entropy as the target function value to calculate the optimal threshold for debris image segmentation.Simulations reveal that the ITDO algorithm outperforms others in convergence and stability across 12 benchmarks.The ITDO-Tsallis algorithm,notably,offers swifter convergence and more precise target resolution than its counterparts,proving its efficacy in debris image segmentation within static explosion fields.
关 键 词:袋獾算法 多阈值分割 Tsallis相对熵 Tent混沌映射 自适应权重
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.97.63