检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨岸霖 蔡永香[2] 胡华科[3] 张凇源 张梦琪 YANG Anlin;CAI Yongxiang;HU Huake;ZHANG Songyuan;ZHANG Mengqi(Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society,Changjiang Geophysical Eaploration and Testing Company Limited(Wuhan),Wuhan 430000,China;School of Geosciences,Yangtze University,Wuhan 430100,China;School of Geography and Tourism,Jiaying University,Meizhou 514015,China)
机构地区:[1]中国地球物理学会工程物探检测重点实验室长江地球物理探测(武汉)有限公司,武汉430000 [2]长江大学地球科学学院,武汉430100 [3]嘉应学院地理科学与旅游学院,梅州514015
出 处:《给水排水》2024年第6期137-145,共9页Water & Wastewater Engineering
基 金:中国地球物理学会工程物探检测重点实验室开放研究基金(CJ2021IC03)。
摘 要:目前地下排水管道检测后的缺陷评估主要采用人工方式进行,不仅费时、费力,智能化程度低,而且容易受到人工经验与视觉疲劳的影响,导致遗漏与误判,影响结果的准确性。近年来迅速兴起的实例分割技术,具有强大的数据特征学习和描述能力。提出了一种基于Mask R-CNN实例分割网络的管道缺陷评估MR-GA(Mask R-CNN-Grading Assessment)方法。首先,自建样本数据集,对Mask R-CNN进行训练构建模型;其次,利用构建好的模型对输入的管道检测帧进行缺陷分类和实例分割;在此基础上,结合《城镇排水管道检测与评估技术规程》,根据各类管道缺陷特征,制定出缺陷量化分级评估方案;最后,按此方案进行参数计算及分级评估。将MR-GA方法应用于实际工程项目,与人工评估结果相比,缺陷类别识别准确率达到91.34%,缺陷分级准确率达到88.75%。At present,the evaluation of defects after underground drainage pipe inspection is mainly carried out manually,which is not only time-consuming and laborious,but also low in intelligence,and easily affected by manual experience and visual fatigue,leading to omissions and misjudgments and affecting the accuracy of results.In recent years,instance segmentation technology has emerged rapidly,with powerful data feature learning and description capabilities.In this paper,we propose a MR-GA(Mask R-CNN-Grading Assessment)method for pipeline defect assessment based on Mask R-CNN instance segmentation network.Firstly,we construct a model by training Mask R-CNN with self-built sample data set.Secondly,we use the constructed model to classify and segment the defects of the input pipe inspection frames.On this basis,we develop a quantitative grading assessment scheme based on the characteristics of various types of pipe defects in conjunction with the Technical regulations for inspection and assessment of urban drainage pipes.Finally,we carry out parameter calculation and grading assessment according to this scheme.Finally,the parameters are calculated and graded according to this scheme.When the MR-GA method was applied to the actual project,the accuracy of defect category identification reached 91.34%and the accuracy of defect grading reached 88.75%compared with the manual evaluation results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.200.134