基于机器学习算法的扬州市冬小麦遥感分类提取  

Remote sensing classification and extraction of winter wheat in Yangzhou based on machine learning algorithm

在线阅读下载全文

作  者:陈雨欣 刘章鑫 刘欣谊 刘涛[1,2] 孙成明 Chen Yuxin;Liu Zhangxin;Liu Xinyi;Liu Tao;Sun Chengming(Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology,College of Agriculture,Yangzhou University,Yangzhou,225009,China;Jiangsu Co‑Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University,Yangzhou,225009,China;Research Institute of Smart Agriculture,Yangzhou University,Yangzhou,225009,China)

机构地区:[1]江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室,扬州大学农学院,江苏扬州225009 [2]江苏省粮食作物现代产业技术协同创新中心,扬州大学,江苏扬州225009 [3]扬州大学智慧农业研究院,江苏扬州225009

出  处:《中国农机化学报》2024年第8期154-161,169,共9页Journal of Chinese Agricultural Mechanization

基  金:国家自然科学基金项目(31671615,31872852)。

摘  要:卫星遥感技术是目前较为常用的农作物监测与分类技术。为实现区域冬小麦精确分类和面积提取,以江苏省扬州市为例,以哨兵2号卫星数据及航天飞机雷达地形测量(SRTM)高程数据为数据源,利用分类与回归决策树(CART)、梯度提升决策树(GBDT)、支持向量机(SVM)和随机森林(RF)4种机器学习算法建立分类模型。同时下载并调用2021年3月22日研究区的MSI多光谱影像,提取光谱、纹理、地形特征等参数,对研究区冬小麦进行分类提取,并分析4种模型的分类效果和精度。结果表明,RF和GBDT分类方法效果最好,总体精度最高,均为0.967,Kappa系数达0.960;SVM分类方法总体精度最低,为0.514,但用户精度最高,为0.972。上述方法可以实现区域农作物的精确分类和提取。Satellite remote sensing technology is a commonly used monitoring and classification technology in crops at present.In order to achieve accurate classification and area extraction of regional winter wheat,Yangzhou City,Jiangsu Province had been taken as an example in this study.The Sentinel-2 satellite data and Shuttle Radar Topography Mission(SRTM)elevation data were used as data sources.Four machine learning algorithms,including classification and regression decision tree(CART),Gradient Boosted Decision Tree(GBDT),support vector machine(SVM)and Random forests(RF),were used to establish the classification model.At the same time,the MSI multispectral image of March 22,2021 in the study area was called and downloaded to extract parameters such as spectrum,texture and terrain features,and the winter wheat in the study area was classified and extracted,and the classification effect and accuracy of the four models were analyzed.The results showed that RF and GBDT classification methods had the best effect and the highest overall accuracy(OA),and both of the OA values were 0.967 and Kappa coefficient was 0.960.The OA of SVM classification method was the lowest(0.514),but the user accuracy(UA)was the highest(0.972).The method mentioned above could realize accurate classification and extraction of regional crops.

关 键 词:冬小麦 机器学习 单时相 面积提取 遥感分类 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置] S512[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象