Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias  

在线阅读下载全文

作  者:Batyrkhan Omarov Meirzhan Baikuvekov Daniyar Sultan Nurzhan Mukazhanov Madina Suleimenova Maigul Zhekambayeva 

机构地区:[1]Department of Information Systems,Al-Farabi Kazakh National University,Almaty,050040,Kazakhstan [2]Department of Mathematical and Computer Modeling,International Information Technology University,Almaty,050040,Kazakhstan [3]Department of Software Engineering,Satbayev University,Almaty,050013,Kazakhstan

出  处:《Computers, Materials & Continua》2024年第7期341-359,共19页计算机、材料和连续体(英文)

基  金:supported by the research project—Application of Machine Learning Methods for Early Diagnosis of Pathologies of the Cardiovascular System funded by the Ministry of Science and Higher Education of the Republic of Kazakhstan.Grant No.IRN AP13068289.

摘  要:This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart arrhythmias.The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency.The model leverages the deep hierarchical feature extraction capabilities of ResNets,which are adept at identifying intricate patterns within electrocardiogram(ECG)data,while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals.The integration of an Attention Mechanism refines the model’s focus on critical segments of ECG data,ensuring a nuanced analysis that highlights the most informative features for arrhythmia classification.Evaluated on a comprehensive dataset of 12-lead ECG recordings,our ensemble model demonstrates superior performance in distinguishing between various types of arrhythmias,with an accuracy of 98.4%,a precision of 98.1%,a recall of 98%,and an F-score of 98%.This novel combination of convolutional and recurrent neural networks,supplemented by attention-driven mechanisms,advances automated ECG analysis,contributing significantly to healthcare’s machine learning applications and presenting a step forward in developing non-invasive,efficient,and reliable tools for early diagnosis and management of heart diseases.

关 键 词:CNN BiGRU ensemble deep learning ECG ARRHYTHMIA heart disease 

分 类 号:R541.7[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象