检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Batyrkhan Omarov Meirzhan Baikuvekov Daniyar Sultan Nurzhan Mukazhanov Madina Suleimenova Maigul Zhekambayeva
机构地区:[1]Department of Information Systems,Al-Farabi Kazakh National University,Almaty,050040,Kazakhstan [2]Department of Mathematical and Computer Modeling,International Information Technology University,Almaty,050040,Kazakhstan [3]Department of Software Engineering,Satbayev University,Almaty,050013,Kazakhstan
出 处:《Computers, Materials & Continua》2024年第7期341-359,共19页计算机、材料和连续体(英文)
基 金:supported by the research project—Application of Machine Learning Methods for Early Diagnosis of Pathologies of the Cardiovascular System funded by the Ministry of Science and Higher Education of the Republic of Kazakhstan.Grant No.IRN AP13068289.
摘 要:This research introduces an innovative ensemble approach,combining Deep Residual Networks(ResNets)and Bidirectional Gated Recurrent Units(BiGRU),augmented with an Attention Mechanism,for the classification of heart arrhythmias.The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency.The model leverages the deep hierarchical feature extraction capabilities of ResNets,which are adept at identifying intricate patterns within electrocardiogram(ECG)data,while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals.The integration of an Attention Mechanism refines the model’s focus on critical segments of ECG data,ensuring a nuanced analysis that highlights the most informative features for arrhythmia classification.Evaluated on a comprehensive dataset of 12-lead ECG recordings,our ensemble model demonstrates superior performance in distinguishing between various types of arrhythmias,with an accuracy of 98.4%,a precision of 98.1%,a recall of 98%,and an F-score of 98%.This novel combination of convolutional and recurrent neural networks,supplemented by attention-driven mechanisms,advances automated ECG analysis,contributing significantly to healthcare’s machine learning applications and presenting a step forward in developing non-invasive,efficient,and reliable tools for early diagnosis and management of heart diseases.
关 键 词:CNN BiGRU ensemble deep learning ECG ARRHYTHMIA heart disease
分 类 号:R541.7[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49